253 research outputs found

    Expanding the molecular weaponry of bacterial species

    Get PDF

    A broad spectrum protein glycosylation system influences type II protein secretion and associated phenotypes in Vibrio cholerae

    Get PDF
    Protein secretion plays a crucial role for bacterial pathogens, exemplified by facultative human-pathoge

    A transcriptional regulatory mechanism finely tunes the firing of type VI secretion system in response to bacterial enemies

    Get PDF
    The ability to detect and measure danger from an environmental signal is paramount for bacteria to respond accordingly, deploying strategies that halt or counteract potential cellular injury and maximize survival chances. Type VI secretion systems (T6SSs) are complex bacterial contractile nanomachines able to target toxic effectors into neighboring bacteria competing for the same colonization niche. Previous studies support the concept that either T6SSs are constitutively active or they fire effectors in response to various stimuli, such as high bacterial density, cell-cell contact, nutrient depletion, or components from dead sibling cells. For Serratia marcescens, it has been proposed that its T6SS is stochastically expressed, with no distinction between harmless or aggressive competitors. In contrast, we demonstrate that the Rcs regulatory system is responsible for finely tuning Serratia T6SS expression levels, behaving as a transcriptional rheostat. When confronted with harmless bacteria, basal T6SS expression levels suffice for Serratia to eliminate the competitor. A moderate T6SS upregulation is triggered when, according to the aggressor-prey ratio, an unbalanced interplay between homologous and heterologous effectors and immunity proteins takes place. Higher T6SS expression levels are achieved when Serratia is challenged by a contender like Acinetobacter, which indiscriminately fires heterologous effectors able to exert lethal cellular harm, threatening the survival of the Serratia population. We also demonstrate that Serratia’s RcsB-dependent T6SS regulatory mechanism responds not to general stress signals but to the action of specific effectors from competitors, displaying an exquisite strategy to weigh risks and keep the balance between energy expenditure and fitness costs. IMPORTANCE Serratia marcescens is among the health-threatening pathogens categorized by the WHO as research priorities to develop alternative antimicrobial strategies, and it was also recently identified as one major component of the gut microbiome in familial Crohn disease dysbiosis. Type VI secretion systems (T6SSs) stand among the array of survival strategies that Serratia displays. They are contractile multiprotein complexes able to deliver toxic effectors directed to kill bacterial species sharing the same niche and, thus, competing for vital resources. Here, we show that Serratia is able to detect and measure the extent of damage generated through T6SS-delivered toxins from neighboring bacteria and responds by transcriptionally adjusting the expression level of its own T6SS machinery to counterattack the rival. This strategy allows Serratia to finely tune the production of costly T6SS devices to maximize the chances of successfully fighting against enemies and minimize energy investment. The knowledge of this novel mechanism provides insight to better understand bacterial interactions and design alternative treatments for polymicrobial infections.Fil: Lazzaro, Martina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Feldman, Mario F.. Washington University in St. Louis; Estados UnidosFil: Garcia Vescovi, Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentin

    Subinhibitory concentrations of trimethoprim and sulfamethoxazole prevent biofilm formation by Acinetobacter baumannii through inhibition of Csu pilus expression

    Get PDF
    ABSTRACT Acinetobacter baumannii is emerging as a multidrug-resistant nosocomial pathogen of increasing threat to human health worldwide. Pili are important bacterial virulence factors, playing a role in attachment to host cells and biofilm formation. The Csu pilus, which is assembled via the chaperone-usher secretion system, has been studied in A. baumannii ATCC 19606. Here we show that, in opposition to previous reports, the common laboratory strain ATCC 17978 produces Csu pili. We found that, although ATCC 17978 was resistant to sulfamethoxazole (Smx) and trimethoprim (Tmp), subinhibitory concentrations of these antibiotics abolished the expression of Csu and consequently produced a dramatic reduction in biofilm formation by ATCC 17978. Smx and Tmp acted synergistically to inhibit the enzymatic systems involved in the bacterial synthesis of tetrahydrofolate (THF), which is required for the synthesis of nucleotides. The effects of these antibiotics were partially relieved by exogenous THF addition, indicating that Smx and Tmp turn off Csu assembly by inducing folate stress. We propose that, for Acinetobacter , nanomolar concentrations of Smx and Tmp represent a “danger signal.” In response to this signal, Csu expression is repressed, allowing biofilm dispersal and escape from potentially inhibitory concentrations of antibiotics. The roles of antibiotics as signaling molecules are being increasingly acknowledged, with clear implications for both the treatment of bacterial diseases and the understanding of complex microbial interactions in the environment. </jats:p

    The multitalented type III chaperones: all you can do with 15 kDa

    Get PDF
    Despite the fact that type III chaperones were discovered approximately 10 years ago, the precise role of most of them is still mysterious. A panoply of functions has been proposed for the members of this family of proteins. Type III chaperones have been suggested to act as anti-aggregation and stabilizing factors. They have also been proposed to keep their substrates in unfolded or partially folded structures, set a hierarchy on secretion, and participate in the regulation of the transcription of the type III substrates. Here, we review this enigmatic family of proteins, and discuss the experimental data supporting the roles proposed for type III chaperone

    The tip of the VgrG spike is essential to functional type VI secretion system assembly in Acinetobacter baumannii

    Get PDF
    The type VI secretion system (T6SS) is a critical weapon in bacterial warfare between Gram-negative bacteria. Although invaluable for niche establishment, this machine represents an energetic burden to its host bacterium

    Pathogenic Acinetobacter: From the cell surface to infinity and beyond

    Get PDF
    The genus Acinetobacter encompasses multiple nosocomial opportunistic pathogens that are of increasing worldwide relevance because of their ability to survive exposure to various antimicrobial and sterilization agents. Among these, Acinetobacter baumannii, Acinetobacter nosocomialis, and Acinetobacter pittii are the most frequently isolated in hospitals around the world. Despite the growing incidence of multidrug-resistant Acinetobacter spp., little is known about the factors that contribute to pathogenesis. New strategies for treating and managing infections caused by multidrug-resistant Acinetobacter strains are urgently needed, and this requires a detailed understanding of the pathobiology of these organisms. In recent years, some virulence factors important for Acinetobacter colonization have started to emerge. In this review, we focus on several recently described virulence factors that act at the bacterial surface level, such as the capsule, O-linked protein glycosylation, and adhesins. Furthermore, we describe the current knowledge regarding the type II and type VI secretion systems present in these strains

    Comparison of the clinical characteristics of hospital-acquired and non-hospital-acquired Acinetobacter calcoaceticus-baumannii complex in a large midwest US health care system

    Get PDF
    Caros(as) Autores(as), para submeter textos à publicação na Revista Trabalho & Educação, favor acessar o link NORMAS no menu localizado no topo da página principal e observar as recomendações e instruções indicadas. Agradecemos muitíssimo o interesse em publicar na T&E
    • …
    corecore