85 research outputs found
Patterns driven by combined AC and DC electric fields in nematic liquid crystals
The effect of superimposed ac and dc electric fields on the formation of
electroconvection and flexoelectric patterns in nematic liquid crystals was
studied. For selected ac frequencies an extended standard model of the
electro-hydrodynamic instabilities was used to characterize the onset of
pattern formation in the two-dimensional parameter space of the magnitudes of
the ac and dc electric field components. Numerical as well as approximate
analytical calculations demonstrate that depending on the type of patterns and
on the ac frequency, the combined action of ac and dc fields may either enhance
or suppress the formation of patterns. The theoretical predictions are
qualitatively confirmed by experiments in most cases. Some discrepancies,
however, seem to indicate the need to extend the theoretical description
Endophytic root colonization of gramineous plants by Herbaspirillum frisingense
Herbaspirillum frisingense is a diazotrophic betaproteobacterium isolated from C4-energy plants, for example Miscanthus sinensis. To demonstrate endophytic colonization unequivocally, immunological labeling techniques using monospecific polyclonal antibodies against two H. frisingense strains and green fluorescent protein (GFP)-fluorescence tagging were applied. The polyclonal antibodies enabled specific in situ identification and very detailed localization of H. frisingense isolates Mb11 and GSF30T within roots of MiscanthusĂgiganteus seedlings. Three days after inoculation, cells were found inside root cortex cells and after 7 days they were colonizing the vascular tissue in the central cylinder. GFP-tagged H. frisingense strains could be detected and localized in uncut root material by confocal laser scanning microscopy and were found as endophytes in cortex cells, intercellular spaces and the central cylinder of barley roots. Concerning the production of potential plant effector molecules, H. frisingense strain GSF30T tested positive for the production of indole-3-acetic acid, while Mb11 was shown to produce N-acylhomoserine lactones, and both strains were able to utilize 1-aminocyclopropane-1-carboxylate (ACC), providing an indication of the activity of an ACC-deaminase. These results clearly present H. frisingense as a true plant endophyte and, although initial greenhouse experiments did not lead to clear plant growth stimulation, demonstrate the potential of this species for beneficial effects on the growth of crop plant
Modulation of Metabolism and Switching to Biofilm Prevail over Exopolysaccharide Production in the Response of Rhizobium alamii to Cadmium
Heavy metals such as cadmium (Cd2+) affect microbial metabolic processes. Consequently, bacteria adapt by adjusting their cellular machinery. We have investigated the dose-dependent growth effects of Cd2+ on Rhizobium alamii, an exopolysaccharide (EPS)-producing bacterium that forms a biofilm on plant roots. Adsorption isotherms show that the EPS of R. alamii binds cadmium in competition with calcium. A metabonomics approach based on ion cyclotron resonance Fourier transform mass spectrometry has showed that cadmium alters mainly the bacterial metabolism in pathways implying sugars, purine, phosphate, calcium signalling and cell respiration. We determined the influence of EPS on the bacterium response to cadmium, using a mutant of R. alamii impaired in EPS production (MSÎGT). Cadmium dose-dependent effects on the bacterial growth were not significantly different between the R. alamii wild type (wt) and MSÎGT strains. Although cadmium did not modify the quantity of EPS isolated from R. alamii, it triggered the formation of biofilm vs planktonic cells, both by R. alamii wt and by MSÎGT. Thus, it appears that cadmium toxicity could be managed by switching to a biofilm way of life, rather than producing EPS. We conclude that modulations of the bacterial metabolism and switching to biofilms prevails in the adaptation of R. alamii to cadmium. These results are original with regard to the conventional role attributed to EPS in a biofilm matrix, and the bacterial response to cadmium
Geroscience and pathology: a new frontier in understanding age-related diseases
Geroscience, a burgeoning discipline at the intersection of aging and disease, aims to unravel the intricate relationship between the aging process and pathogenesis of age-related diseases. This paper explores the pivotal role played by geroscience in reshaping our understanding of pathology, with a particular focus on age-related diseases. These diseases, spanning cardiovascular and cerebrovascular disorders, malignancies, and neurodegenerative conditions, significantly contribute to the morbidity and mortality of older individuals. We delve into the fundamental cellular and molecular mechanisms underpinning aging, including mitochondrial dysfunction and cellular senescence, and elucidate their profound implications for the pathogenesis of various age-related diseases. Emphasis is placed on the importance of assessing key biomarkers of aging and biological age within the realm of pathology. We also scrutinize the interplay between cellular senescence and cancer biology as a central area of focus, underscoring its paramount significance in contemporary pathological research. Moreover, we shed light on the integration of anti-aging interventions that target fundamental aging processes, such as senolytics, mitochondria-targeted treatments, and interventions that influence epigenetic regulation within the domain of pathology research. In conclusion, the integration of geroscience concepts into pathological research heralds a transformative paradigm shift in our understanding of disease pathogenesis and promises breakthroughs in disease prevention and treatment
The Role of Neutral Sphingomyelinase-2 (NSM2) in the Control of Neutral Lipid Storage in T Cells
The accumulation of lipid droplets (LDs) and ceramides (Cer) is linked to non-alcoholic fatty liver disease (NAFLD), regularly co-existing with type 2 diabetes and decreased immune function. Chronic inflammation and increased disease severity in viral infections are the hallmarks of the obesity-related immunopathology. The upregulation of neutral sphingomyelinase-2 (NSM2) has shown to be associated with the pathology of obesity in tissues. Nevertheless, the role of sphingolipids and specifically of NSM2 in the regulation of immune cell response to a fatty acid (FA) rich environment is poorly studied. Here, we identified the presence of the LD marker protein perilipin 3 (PLIN3) in the intracellular nano-environment of NSM2 using the ascorbate peroxidase APEX2-catalyzed proximity-dependent biotin labeling method. In line with this, super-resolution structured illumination microscopy (SIM) shows NSM2 and PLIN3 co-localization in LD organelles in the presence of increased extracellular concentrations of oleic acid (OA). Furthermore, the association of enzymatically active NSM2 with isolated LDs correlates with increased Cer levels in these lipid storage organelles. NSM2 enzymatic activity is not required for NSM2 association with LDs, but negatively affects the LD numbers and cellular accumulation of long-chain unsaturated triacylglycerol (TAG) species. Concurrently, NSM2 expression promotes mitochondrial respiration and fatty acid oxidation (FAO) in response to increased OA levels, thereby shifting cells to a high energetic state. Importantly, endogenous NSM2 activity is crucial for primary human CD4+ T cell survival and proliferation in a FA rich environment. To conclude, our study shows a novel NSM2 intracellular localization to LDs and the role of enzymatically active NSM2 in metabolic response to enhanced FA concentrations in T cells
Aldosterone Antagonists in Monotherapy Are Protective against Streptozotocin-Induced Diabetic Nephropathy in Rats
Angiotensin converting enzyme inhibitors (ACEi) and angiotensin II receptor blockers (ARB) are the standard clinical therapy of diabetic nephropathy (DN), while aldosterone antagonists are only used as adjuncts. Previously in experimental DN we showed that Na/K ATPase (NKA) is mislocated and angiotensin II leads to superimposed renal progression. Here we investigated the monotherapeutic effect of aldosterone blockers on the progression of DN and renal NKA alteration in comparison to ACEi and ARBs. Streptozotocin-diabetic rats developing DN were treated with aldosterone antagonists; ACEi and ARB. Renal function, morphology, protein level and tubular localization of NKA were analyzed. To evaluate the effect of high glucose per se; HK-2 proximal tubular cells were cultured in normal or high concentration of glucose and treated with the same agents. Aldosterone antagonists were the most effective in ameliorating functional and structural kidney damage and they normalized diabetes induced bradycardia and weight loss. Aldosterone blockers also prevented hyperglycemia and diabetes induced increase in NKA protein level and enzyme mislocation. A monotherapy with aldosterone antagonists might be as, or more effective than ACEi or ARBs in the prevention of STZ-induced DN. Furthermore the alteration of the NKA could represent a novel pathophysiological feature of DN and might serve as an additional target of aldosterone blockers
- âŠ