2 research outputs found
Construcci贸n de un 铆ndice de privaci贸n por zona b谩sica de salud en Arag贸n a partir de datos de censo de 2011
Fundamentos: La medici贸n de las desigualdades mediante indicadores compuestos facilita la priorizaci贸n y puesta en marcha de acciones de salud p煤blica. La fuente de informaci贸n m谩s com煤nmente utilizada para ello ha sido el Censo de Poblaci贸n y viviendas de 2011 (CPV_2011). El objetivo fue validar la utilizaci贸n del CPV_2011 por Zona de Salud (ZBS) y construir un 铆ndice de privaci贸n (IP) por ZBS as铆 como analizar su asociaci贸n con la mortalidad en Arag贸n.
M茅todos: Estudio ecol贸gico por ZBS. El CPV_2011, con dise帽o muestral, se valid贸 mediante un test de homogeneidad de Chi_cuadrado y se calcularon 26 indicadores socioecon贸micos. Se obtuvo el coeficiente de correlaci贸n de Spearman entre indicadores socioecon贸micos y Razones de Mortalidad Estandarizadas (REM). Se realiz贸 un an谩lisis de componentes principales (ACP) con los indicadores correlacionados significativamente, extrayendo los componentes con autovalores mayores a 1 y se obtuvo la matriz rotada (Varimax). Se realizaron ACP con las variables de cada componente extrayendo un 煤nico factor. Se agruparon las ZBS en cuartiles, seg煤n el factor calculando tasas de mortalidad ajustadas a poblaci贸n est谩ndar europea por edad, sexo y cuartil. El factor que m谩s discrimina por cuartiles se consider贸 IP y se recalcul贸 para ZBS urbanas con id茅nticas variables.
Resultados: La validaci贸n de la muestra del CPV_2011, detect贸 cuatro ZBS infrarrepresentadas. 17 indicadores socioecon贸micos se correlacionaron con REM. Del primer ACP se extrajeron 3 componentes, eligiendo como IP, el formado por %Desempleo, %Asalariados eventuales, %Instrucci贸n Insuficiente 16-64 a帽os y %Extranjeros. Las varianzas explicadas fueron 59,7% y 73,8% en el IP urbano. En hombres, la mortalidad en el cuartil menos privado (544,7 por 105; IC95%:515,8-573,6), fue inferior a la del m谩s privado (618,7 por 105; IC95%:589,4,648,0).
Conclusiones: El IP permite identificar ZBS desfavorecidas constituyendo una herramienta para evidenciar desigualdades y planificar intervenciones seg煤n necesidades.
Background: The measurement of inequalities using composite indicators facilitates the prioritization and implementation of public health actions. The most commonly source of information used for this has been the Population and Housing Census of 2011 (PCH_2011). The objective of this study was to evaluate the use of PHC_2011 and develop a deprivation index (DI) by Basic Healthcare Area (BHA) and to analyse its association with mortality in Aragon.
Methods: Ecological study by BHA. Since PHC_2011 was a sample of the population it was validated by the Chi-square test for homogeneity. 26 socioeconomic indicators were calculated. Spearman correlation coefficients were used to evaluate the relationship between socioeconomic indicators and Standardized Mortality Ratios (SMR). Principal Component Analyses (PCA) were conducted using the indicators in which a significant correlation was found. Components with eigenvalues higher than 1 were extracted, and the rotated matrix (Varimax) was obtained. PCA from each component were conducted, extracting only one factor. BHA were grouped into, according to the deprivation index values. Mortality rates adjusted to the European Standard Population by age, sex and quartile were calculated. The most discriminant factor by quartiles was considered DI. A different DI for urban areas was obtained from the same variables.
Results: The validation of PHC sample detected 4 underrepresented BHA. 17 socioeconomic indicators were significatively correlated with SMR. From the first PCA, 3 components were obtained. The DI included % unemployment, % eventual workers, % insufficient education 16-64 years old and % foreigners. The % of variance explained by the DI was 59.7% and 73.8% in urban areas. In men, mortality in the quartile with the lowest deprivation (544, 7 per 105; CI95%: 515, 8-573, 6) was significatively lower than in the most deprivated areas(618, 7 per 105; CI95%: 589, 4-648, 0).
Conclusions: This new DI allows us to identify deprived BHA. This is a useful tool to bring to light health inequalities and to plan interventions according to population's needs