156 research outputs found
Pairing states of a polarized Fermi gas trapped in a one-dimensional optical lattice
We study the properties of a one-dimensional (1D) gas of fermions trapped in
a lattice by means of the density matrix renormalization group method, focusing
on the case of unequal spin populations, and strong attractive interaction. In
the low density regime, the system phase-separates into a well defined
superconducting core and a fully polarized metallic cloud surrounding it. We
argue that the superconducting phase corresponds to a 1D analogue of the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, with a quasi-condensate of
tightly bound bosonic pairs with a finite center-of-mass momentum that scales
linearly with the magnetization. In the large density limit, the system allows
for four phases: in the core, we either find a Fock state of localized pairs or
a metallic shell with free spin-down fermions moving in a fully filled
background of spin-up fermions. As the magnetization increases, the Fock state
disappears to give room for a metallic phase, with a partially polarized
superconducting FFLO shell and a fully polarized metallic cloud surrounding the
core.Comment: 4 pages, 5 fig
Aggregate formation prevents dTDP-43 neurotoxicity in the Drosophila melanogaster eye
TDP-43 inclusions are an important histopathological feature in various neurodegenerative disorders, including Amyotrophic Lateral Sclerosis and Fronto-Temporal Lobar Degeneration. However, the relation of these inclusions with the pathogenesis of the disease is still unclear. In fact, the inclusions could be toxic themselves, induce loss of function by sequestering TDP-43 or a combination of both. Previously, we have developed a cellular model of aggregation using the TDP-43 Q/N rich amino acid sequence 331-369 repeated 12 times (12xQ/N) and have shown that these cellular inclusions are capable of sequestering the endogenous TDP-43 both in non-neuronal and neuronal cells. We have tested this model in vivo in the Drosophila melanogaster eye. The eye structure develops normally in the absence of dTDP-43, a fact previously seen in knock out fly strains. We show here that expression of EGFP 12xQ/N does not alter the structure of the eye. In contrast, TBPH overexpression is neurotoxic and causes necrosis and loss of function of the eye. More important, the neurotoxicity of TBPH can be abolished by its incorporation to the insoluble aggregates induced by EGFP 12xQ/N. This data indicates that aggregation is not toxic per se and instead has a protective role, modulating the functional TBPH available in the tissue. This is an important indication for the possible pathological mechanism in action on ALS patients. © 2014
Non-equilibrium electronic transport in a one-dimensional Mott insulator
We calculate the non-equilibrium electronic transport properties of a
one-dimensional interacting chain at half filling, coupled to non-interacting
leads. The interacting chain is initially in a Mott insulator state that is
driven out of equilibrium by applying a strong bias voltage between the leads.
For bias voltages above a certain threshold we observe the breakdown of the
Mott insulator state and the establishment of a steady-state electronic current
through the system. Based on extensive time-dependent density matrix
renormalization group simulations, we show that this steady-state current
always has the same functional dependence on voltage, independent of the
microscopic details of the model and relate the value of the threshold to the
Lieb-Wu gap. We frame our results in terms of the Landau-Zener dielectric
breakdown picture. Finally, we also discuss the real-time evolution of the
current, and characterize the current-carrying state resulting from the
breakdown of the Mott insulator by computing the double occupancy, the spin
structure factor, and the entanglement entropy.Comment: 12 pages RevTex4, 12 eps figures, as published, minor revision
Dimer, trimer and FFLO liquids in mass- and spin-imbalanced trapped binary mixtures in one dimension
We present a systematic investigation of attractive binary mixtures in
presence of both spin- and mass-imbalance in one dimensional setups described
by the Hubbard model. After discussing typical cold atomic experimental
realizations and the relation between microscopic and effective parameters, we
study several many-body features of trapped Fermi-Fermi and Bose-Bose mixtures
such as density profiles, momentum distributions and correlation functions by
means of numerical density-matrix-renormalization-group and Quantum Monte Carlo
simulations. In particular, we focus on the stability of
Fulde-Ferrell-Larkin-Ovchinnikov, dimer and trimer fluids in inhomogeneous
situations, as typically realized in cold gas experiments due to the harmonic
confinement. We finally consider possible experimental signatures of these
phases both in the presence of a finite polarization and of a finite
temperature.Comment: 19 pages, 25 figure
TDP-43 regulates drosophila neuromuscular junctions growth by modulating futsch/MAP1B levels and synaptic microtubules organization
TDP-43 is an evolutionarily conserved RNA binding protein recently associated with the pathogenesis of different neurological diseases. At the moment, neither its physiological role in vivo nor the mechanisms that may lead to neurodegeneration are well known. Previously, we have shown that TDP-43 mutant flies presented locomotive alterations and structural defects at the neuromuscular junctions. We have now investigated the functional mechanism leading to these phenotypes by screening several factors known to be important for synaptic growth or bouton formation. As a result we found that alterations in the organization of synaptic microtubules correlate with reduced protein levels in the microtubule associated protein futsch/MAP1B. Moreover, we observed that TDP-43 physically interacts with futsch mRNA and that its RNA binding capacity is required to prevent futsch down regulation and synaptic defects. © 2011 Godena et al
Evolutionarily conserved heterogeneous nuclear ribonucleoprotein (hnRNP) A/B proteins functionally interact with human and drosophila tar DNA-binding protein 43 (TDP-43)
Background: TDP-43 and hnRNPA1/A2 factors are implicated in neurodegeneration. Results: The human and fruit fly TDP-43 and hnRNPA1/A2 orthologs show physical, genetic, and functional interplays. Conclusion: The functional cooperation between TBPH/Hrp38 and TDP-43/hnRNP A/B is conserved throughout evolution. Significance: TBPH/Hrp38 interplay can be critical for neurodegeneration, and Drosophila is a model suitable to study the impact of this interaction. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc
An age-related reduction of brain TBPH/TDP-43 levels precedes the onset of locomotion defects in a Drosophila ALS model
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. The average age of onset of both sporadic and familial cases is 50-60. years of age. The presence of cytoplasmic inclusions of the RNA-binding protein TAR DNA-binding protein-43 (TDP-43) in the affected neurons is seen in 95% of the ALS cases, which results in TDP-43 nuclear clearance and loss of function. The Drosophila melanogaster ortholog of TDP-43 (TBPH) shares many characteristics with the human protein. Using a TDP-43 aggregation inducer previously developed in human cells, we created a transgenic fly that shows an adult locomotive defect. Phenotype onset correlates with a physiologically age-related drop of TDP-43/TBPH mRNA and protein levels, seen both in mice and flies. Artificial reduction of mRNA levels, in vivo, anticipates the locomotion defect to the larval stage. Our study links, for the first time, aggregation and the age-related, evolutionary conserved reduction of TDP-43/TBPH levels with the onset of an ALS-like locomotion defect in a Drosophila model. A similar process might trigger the human disease
TDP-43 promotes the formation of neuromuscular synapses through the regulation of Disc-large expression in Drosophila skeletal muscles
Background: The ribonuclear protein TDP-43 has been implicated in the pathophysiology of amyotrophic lateral sclerosis (ALS), with genetic mutations being linked to the neurological symptoms of the disease. Though alterations in the intracellular distribution of TDP-43 have been observed in skeletal muscles of patients suffering from ALS, it is not clear whether such modifications play an active role in the disease or merely represent an expression of muscle homeostatic mechanisms. Also, the molecular and metabolic pathways regulated by TDP-43 in the skeletal muscle remain largely unknown. Here, we analyze the function of TBPH, the Drosophila melanogaster ortholog of TDP-43, in skeletal muscles. Results: We modulated the activity of TDP-43 in Drosophila muscles by means of RNA interference and observed that it is required to promote the formation and growth of neuromuscular synapses. TDP-43 regulated the expression levels of Disc-large (Dlg), and restoring Dlg expression either in skeletal muscles or in motoneurons was sufficient to suppress the locomotive and synaptic defects of TDP-43-null flies. These results were validated by the observation of a decrease in Dlg levels in human neuroblastoma cells and iPSC-differentiated motoneurons derived from ALS patients, suggesting similar mechanisms may potentially be involved in the pathophysiology of the disease. Conclusions: Our results help to unveil the physiological role of TDP-43 in skeletal muscles as well as the mechanisms responsible for the autonomous and non-autonomous behavior of this protein concerning the organization of neuromuscular synapses
Quantum distillation: dynamical generation of low-entropy states of strongly correlated fermions in an optical lattice
Correlations between particles can lead to subtle and sometimes
counterintuitive phenomena. We analyze one such case, occurring during the
sudden expansion of fermions in a lattice when the initial state has a strong
admixture of double occupancies. We promote the notion of quantum distillation:
during the expansion, and in the presence of strongly repulsive interactions,
doublons group together, forming a nearly ideal band insulator, which is
metastable with a low entropy. We propose that this effect could be used for
cooling purposes in experiments with two-component Fermi gases.Comment: Final version as published, minor revisions, more discussion on the
cooling proposal, includes auxiliary material (EPAPS), 7 pages Revtex 4, 12
eps figure
- …