3,832 research outputs found
Symplectic Geometry on Quantum Plane
A study of symplectic forms associated with two dimensional quantum planes
and the quantum sphere in a three dimensional orthogonal quantum plane is
provided. The associated Hamiltonian vector fields and Poissonian algebraic
relations are made explicit.Comment: 12 pages, Late
Fractional Quantum Hall Effect in Topological Flat Bands with Chern Number Two
Recent theoretical works have demonstrated various robust Abelian and
non-Abelian fractional topological phases in lattice models with topological
flat bands carrying Chern number C=1. Here we study hard-core bosons and
interacting fermions in a three-band triangular-lattice model with the lowest
topological flat band of Chern number C=2. We find convincing numerical
evidence of bosonic fractional quantum Hall effect at the filling
characterized by three-fold quasi-degeneracy of ground states on a torus, a
fractional Chern number for each ground state, a robust spectrum gap, and a gap
in quasihole excitation spectrum. We also observe numerical evidence of a
robust fermionic fractional quantum Hall effect for spinless fermions at the
filling with short-range interactions.Comment: 5 pages, 7 figures, with Supplementary Materia
Modification of conductive polymer for polymeric anodes of flexible organic light-emitting diodes
Author name used in this publication: Guang-Feng WangAuthor name used in this publication: Xiao-Ming TaoAuthor name used in this publication: John H. Xin2008-2009 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Fluctuation-Driven Vortex Fractionalization in Topologically Ordered Superfluids of Cold Atoms
We have studied spin structures of fluctuation-driven fractionalized vortices
and topological spin order in 2D nematic superfluids of cold sodium atoms. Our
Monte Carlo simulations suggest a softened pi-spin disclination structure in a
half-quantum vortex when spin correlations are short ranged; in addition,
calculations indicate that a unique non-local topological spin order emerges
simultaneously as cold atoms become a superfluid below a critical temperature.
We have also estimated fluctuation-dependent critical frequencies for
half-quantum vortex nucleation in rotating optical traps and discussed probing
these excitations in experiments.Comment: 5 pages, 2 figures; revised version accepted by Europhysics Letter
Berry's Phases of Ground States of Interacting Spin-One Bosons: Chains of Monopoles and Monosegments
We study Berry's connection potentials of many-body ground states of spin-one
bosons with antiferromagnetic interactions in adiabatically varying magnetic
fields. We find that Berry's connection potentials are generally determined by,
instead of usual singular monopoles, linearly positioned monosegments each of
which carries one unit of topological charge; in the absence of a magnetic
field gradient this distribution of monosegments becomes a linear chain of
monopoles. Consequently, Berry's phases consist of a series of step functions
of magnetic fields; a magnetic field gradient causes rounding of these
step-functions. We also calculate Berry's connection fields, profiles of
monosegments and show that the total topological charge is conserved in a
parameter space
Vibration analysis of a beam on a moving vehicle under the road excitation with different contact models
Dynamic analysis of a beam on a moving vehicle is presented in this paper. The vehicle is simulated by a four degrees-of-freedom mass-spring system and the beam on top is supported by spring-damping systems. Two contact models named the âpoint contactâ and the âpatch contactâ respectively, are adopted to simulate the interaction between road surface and vehicular tyres. The equation of motion of the beam-vehicle system is formulated and the dynamic response on the beam under the excitation of the irregular road surface is derived. Numerical simulations are conducted to demonstrate the influence of different factors, such as the length of the contact, the velocity of vehicle, the road condition and the bracing stiffness, etc. on the vibration level of the beam structure, which aims to provide references on the vibration problem in transporting a beam-shaped package
Composition dependence of electronic structure and optical properties of Hf1-xSixOy gate dielectrics
Copyright Š 2008 American Institute of Physics. This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditionsComposition-dependent electronic structure and optical properties of Hf1âxSixOy 0.1 x 0.6 gate
dielectrics on Si at 450 °C grown by UV-photo-induced chemical vapor deposition UV-CVD have
been investigated via x-ray photoemission spectroscopy and spectroscopy ellipsometry SE . By
means of the chemical shifts in the Hf 4f, Si 2p, and O 1s spectra, the HfâOâSi bondings in the
as-deposited films have been confirmed. Analyses of composition-dependent band alignment of
Hf1âxSixOy / Si gate stacks have shown that the valence band VB offset Ev demonstrates little
change; however, the values of conduction band offset Ec increase with the increase in the silicon
atomic composition, resulting from the increase in the separation between oxygen 2p orbital VB
state and antibonding d states intermixed of Hf and Si. Analysis by SE, based on the TaucâLorentz
model, has indicated that decreases in the optical dielectric constant and increase in band gap have
been observed as a function of silicon contents. Changes in the complex dielectric functions and
band gap Eg related to the silicon concentration in the films are discussed systematically. From the
band offset and band gap viewpoint, these results suggest that Hf1âxSixOy films provide sufficient
tunneling barriers for electrons and holes, making them promising candidates as alternative gate
dielectrics.National Natural Science Foundation of China and Royal Society U.K
- âŚ