260 research outputs found

    BabyWalk: Going Farther in Vision-and-Language Navigation by Taking Baby Steps

    Full text link
    Learning to follow instructions is of fundamental importance to autonomous agents for vision-and-language navigation (VLN). In this paper, we study how an agent can navigate long paths when learning from a corpus that consists of shorter ones. We show that existing state-of-the-art agents do not generalize well. To this end, we propose BabyWalk, a new VLN agent that is learned to navigate by decomposing long instructions into shorter ones (BabySteps) and completing them sequentially. A special design memory buffer is used by the agent to turn its past experiences into contexts for future steps. The learning process is composed of two phases. In the first phase, the agent uses imitation learning from demonstration to accomplish BabySteps. In the second phase, the agent uses curriculum-based reinforcement learning to maximize rewards on navigation tasks with increasingly longer instructions. We create two new benchmark datasets (of long navigation tasks) and use them in conjunction with existing ones to examine BabyWalk's generalization ability. Empirical results show that BabyWalk achieves state-of-the-art results on several metrics, in particular, is able to follow long instructions better. The codes and the datasets are released on our project page https://github.com/Sha-Lab/babywalk.Comment: Accepted by ACL 202

    A combinatorial congestion estimation approach with generalized detours

    Get PDF
    AbstractCongestion estimation plays an important role in the physical layout of VLSI design. This paper presents a new probabilistic estimation model that improves the previous estimators by relaxing the constraint on detours in a route. The model is more general and realistic for it gives the flexibility for the wires to have wider usage area to bypass the congestion regions and blockages. Given a routing grid and a set of nets to be routed, the model predicts the routing density on each edge of the grid. The routing density provides direct congestion estimation. We compare our estimation results to the actual routing results. Experimental results show the effectiveness of our estimator
    • …
    corecore