112 research outputs found
Scaling of Dirac Fermions and the WKB approximation
We discuss a new method for obtaining the WKB approximation to the Dirac
equation with a scalar potential and a time-like vector potential. We use the
WKB solutions to investigate the scaling behavior of a confining model for
quark-hadron duality. In this model, a light quark is bound to a heavy di-quark
by a linear scalar potential. Absorption of virtual photons promotes the quark
to bound states. The analog of the parton model for this case is for a virtual
photon to eject the bound, ground-state quark directly into free continuum
states. We compare the scaling limits of the response functions for these two
transitions
Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE
The single-phase liquid argon time projection chamber (LArTPC) provides a
large amount of detailed information in the form of fine-grained drifted
ionization charge from particle traces. To fully utilize this information, the
deposited charge must be accurately extracted from the raw digitized waveforms
via a robust signal processing chain. Enabled by the ultra-low noise levels
associated with cryogenic electronics in the MicroBooNE detector, the precise
extraction of ionization charge from the induction wire planes in a
single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event
display images, and quantitatively demonstrated via waveform-level and
track-level metrics. Improved performance of induction plane calorimetry is
demonstrated through the agreement of extracted ionization charge measurements
across different wire planes for various event topologies. In addition to the
comprehensive waveform-level comparison of data and simulation, a calibration
of the cryogenic electronics response is presented and solutions to various
MicroBooNE-specific TPC issues are discussed. This work presents an important
improvement in LArTPC signal processing, the foundation of reconstruction and
therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at
arXiv:1802.0870
Design and construction of the MicroBooNE Cosmic Ray Tagger system
The MicroBooNE detector utilizes a liquid argon time projection chamber
(LArTPC) with an 85 t active mass to study neutrino interactions along the
Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground
level, the detector records many cosmic muon tracks in each beam-related
detector trigger that can be misidentified as signals of interest. To reduce
these cosmogenic backgrounds, we have designed and constructed a TPC-external
Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for
High Energy Physics (LHEP), Albert Einstein center for fundamental physics,
University of Bern. The system utilizes plastic scintillation modules to
provide precise time and position information for TPC-traversing particles.
Successful matching of TPC tracks and CRT data will allow us to reduce
cosmogenic background and better characterize the light collection system and
LArTPC data using cosmic muons. In this paper we describe the design and
installation of the MicroBooNE CRT system and provide an overview of a series
of tests done to verify the proper operation of the system and its components
during installation, commissioning, and physics data-taking
A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber
We have developed a convolutional neural network (CNN) that can make a
pixel-level prediction of objects in image data recorded by a liquid argon time
projection chamber (LArTPC) for the first time. We describe the network design,
training techniques, and software tools developed to train this network. The
goal of this work is to develop a complete deep neural network based data
reconstruction chain for the MicroBooNE detector. We show the first
demonstration of a network's validity on real LArTPC data using MicroBooNE
collection plane images. The demonstration is performed for stopping muon and a
charged current neutral pion data samples
First measurement of inclusive muon neutrino charged current differential cross sections on argon at Eν∼0.8 GeV with the MicroBooNE detector
We report the first measurement of the double-differential and total muon-neutrino charged-current inclusive cross sections on argon at a mean neutrino energy of 0.8 GeV. Data were collected using the MicroBooNE liquid argon time projection chamber located in the Fermilab Booster neutrino beam, and correspond to protons on target of exposure. The measured differential cross sections are presented as a function of muon momentum, using multiple Coulomb scattering as a momentum measurement technique, and the muon angle with respect to the beam direction. We compare the measured cross sections to multiple neutrino event generators and find better agreement with those containing more complete physics at low . The total flux integrated cross section is measured to be
Comparison of ν μ - Ar multiplicity distributions observed by MicroBooNE to GENIE model predictions: MicroBooNE Collaboration
We measure a large set of observables in inclusive charged current muon neutrino scattering on argon with the MicroBooNE liquid argon time projection chamber operating at Fermilab. We evaluate three neutrino interaction models based on the widely used GENIE event generator using these observables. The measurement uses a data set consisting of neutrino interactions with a final state muon candidate fully contained within the MicroBooNE detector. These data were collected in 2016 with the Fermilab Booster Neutrino Beam, which has an average neutrino energy of 800MeV, using an exposure corresponding to 5.0 × 10 19 protons-on-target. The analysis employs fully automatic event selection and charged particle track reconstruction and uses a data-driven technique to separate neutrino interactions from cosmic ray background events. We find that GENIE models consistently describe the shapes of a large number of kinematic distributions for fixed observed multiplicity
Rejecting cosmic background for exclusive neutrino interaction studies with Liquid Argon TPCs; a case study with the MicroBooNE detector
Cosmic ray (CR) interactions can be a challenging source of background for
neutrino oscillation and cross-section measurements in surface detectors. We
present methods for CR rejection in measurements of charged-current
quasielastic-like (CCQE-like) neutrino interactions, with a muon and a proton
in the final state, measured using liquid argon time projection chambers
(LArTPCs). Using a sample of cosmic data collected with the MicroBooNE
detector, mixed with simulated neutrino scattering events, a set of event
selection criteria is developed that produces an event sample with minimal
contribution from CR background. Depending on the selection criteria used a
purity between 50% and 80% can be achieved with a signal selection efficiency
between 50% and 25%, with higher purity coming at the expense of lower
efficiency. While using a specific dataset from the MicroBooNE detector and
selection criteria values optimized for CCQE-like events, the concepts
presented here are generic and can be adapted for various studies of exclusive
{\nu}{\mu} interactions in LArTPCs.Comment: 12 pages, 10 figures, 1 tabl
Differential cross section measurement of charged current interactions without final-state pions in MicroBooNE
In this letter we present the first measurements of an exclusive electron
neutrino cross section with the MicroBooNE experiment using data from the
Booster Neutrino Beamline at Fermilab. These measurements are made for a
selection of charged-current electron neutrinos without final-state pions.
Differential cross sections are extracted in energy and angle with respect to
the beam for the electron and the leading proton. The differential cross
section as a function of proton energy is measured using events with protons
both above and below the visibility threshold. This is done by including a
separate selection of electron neutrino events without reconstructed proton
candidates in addition to those with proton candidates. Results are compared to
the predictions from several modern generators, and we find the data agrees
well with these models. The data shows best agreement, as quantified by
-value, with the generators that predict a lower overall cross section, such
as GENIE v3 and NuWro
Ionization electron signal processing in single phase LArTPCs. Part I. Algorithm Description and quantitative evaluation with MicroBooNE simulation
We describe the concept and procedure of drifted-charge extraction developed in the MicroBooNE experiment, a single-phase liquid argon time projection chamber (LArTPC). This technique converts the raw digitized TPC waveform to the number of ionization electrons passing through a wire plane at a given time. A robust recovery of the number of ionization electrons from both induction and collection anode wire planes will augment the 3D reconstruction, and is particularly important for tomographic reconstruction algorithms. A number of building blocks of the overall procedure are described. The performance of the signal processing is quantitatively evaluated by comparing extracted charge with the true charge through a detailed TPC detector simulation taking into account position-dependent induced current inside a single wire region and across multiple wires. Some areas for further improvement of the performance of the charge extraction procedure are also discussed
Comparison of \nu\mu-Ar multiplicity distributions observed by MicroBooNE to GENIE model predictions
We measure a large set of observables in inclusive charged current muon
neutrino scattering on argon with the MicroBooNE liquid argon time projection
chamber operating at Fermilab. We evaluate three neutrino interaction models
based on the widely used GENIE event generator using these observables. The
measurement uses a data set consisting of neutrino interactions with a final
state muon candidate fully contained within the MicroBooNE detector. These data
were collected in 2016 with the Fermilab Booster Neutrino Beam, which has an
average neutrino energy of 800 MeV, using an exposure corresponding to 5E19
protons-on-target. The analysis employs fully automatic event selection and
charged particle track reconstruction and uses a data-driven technique to
separate neutrino interactions from cosmic ray background events. We find that
GENIE models consistently describe the shapes of a large number of kinematic
distributions for fixed observed multiplicity.Comment: 31 pages, 39 figures, 10 table
- …
