591 research outputs found
Deformation Quantization of Almost Kahler Models and Lagrange-Finsler Spaces
Finsler and Lagrange spaces can be equivalently represented as almost Kahler
manifolds enabled with a metric compatible canonical distinguished connection
structure generalizing the Levi Civita connection. The goal of this paper is to
perform a natural Fedosov-type deformation quantization of such geometries. All
constructions are canonically derived for regular Lagrangians and/or
fundamental Finsler functions on tangent bundles.Comment: the latex 2e variant of the manuscript accepted for JMP, 11pt, 23
page
BRST quantization of quasi-symplectic manifolds and beyond
We consider a class of \textit{factorizable} Poisson brackets which includes
almost all reasonable Poisson structures. A particular case of the factorizable
brackets are those associated with symplectic Lie algebroids. The BRST theory
is applied to describe the geometry underlying these brackets as well as to
develop a deformation quantization procedure in this particular case. This can
be viewed as an extension of the Fedosov deformation quantization to a wide
class of \textit{irregular} Poisson structures. In a more general case, the
factorizable Poisson brackets are shown to be closely connected with the notion
of -algebroid. A simple description is suggested for the geometry underlying
the factorizable Poisson brackets basing on construction of an odd Poisson
algebra bundle equipped with an abelian connection. It is shown that the
zero-curvature condition for this connection generates all the structure
relations for the -algebroid as well as a generalization of the Yang-Baxter
equation for the symplectic structure.Comment: Journal version, references and comments added, style improve
Fedosov Quantization of Lagrange-Finsler and Hamilton-Cartan Spaces and Einstein Gravity Lifts on (Co) Tangent Bundles
We provide a method of converting Lagrange and Finsler spaces and their
Legendre transforms to Hamilton and Cartan spaces into almost Kaehler
structures on tangent and cotangent bundles. In particular cases, the Hamilton
spaces contain nonholonomic lifts of (pseudo) Riemannian / Einstein metrics on
effective phase spaces. This allows us to define the corresponding Fedosov
operators and develop deformation quantization schemes for nonlinear mechanical
and gravity models on Lagrange- and Hamilton-Fedosov manifolds.Comment: latex2e, 11pt, 35 pages, v3, accepted to J. Math. Phys. (2009
Ground-state Wigner functional of linearized gravitational field
The deformation quantization formalism is applied to the linearized
gravitational field. Standard aspects of this formalism are worked out before
the ground state Wigner functional is obtained. Finally, the propagator for the
graviton is also discussed within the context of this formalism.Comment: 18 pages, no figure
Higher order relations in Fedosov supermanifolds
Higher order relations existing in normal coordinates between affine
extensions of the curvature tensor and basic objects for any Fedosov
supermanifolds are derived. Representation of these relations in general
coordinates is discussed.Comment: 11 LaTex pages, no figure
-SDYM fields and heavenly spaces: II. Reductions of the -SDYM system
Reductions of self-dual Yang-Mills (SDYM) system for -bracket Lie
algebra to the Husain-Park (HP) heavenly equation and to
sl(N,{\boldmath{C}) SDYM equation are given. An example of a sequence of
chiral fields () tending for to a curved heavenly
space is found.Comment: 18 page
- …