3,729 research outputs found
Two-color interference stabilization of atoms
The effect of interference stabilization is shown to exist in a system of two
atomic levels coupled by a strong two-color laser field, the two frequencies of
which are close to a two-photon Raman-type resonance between the chosen levels,
with open channels of one-photon ionization from both of them. We suggest an
experiment, in which a rather significant (up to 90%) suppression of ionization
can take place and which demonstrates explicitly the interference origin of
stabilization. Specific calculations are made for H and He atoms and optimal
parameters of a two-color field are found. The physics of the effect and its
relation with such well-known phenomena as LICS and population trapping in a
three-level system are discussed.Comment: the paper includes 1 TeX file and 16 picture
Three-body Thomas-Ehrman shifts of analog states of Ne and N
The lowest-lying states of the Borromean nucleus Ne (O+ +
) and its mirror nucleus N (N+ + ) are compared by using
the hyperspheric adiabatic expansion. Three-body resonances are computed by use
of the complex scaling method. The measured size of O and the low-lying
resonances of F (O+) are first used as constraints to
determine both central and spin-dependent two-body interactions. The
interaction obtained reproduces relatively accurately both experimental
three-body spectra. The Thomas-Ehrman shifts, involving excitation energy
differences, are computed and found to be less than 3% of the total Coulomb
energy shift for all states.Comment: 9 pages, 3 postscript figures, revtex style. To be published in Phys.
Rev.
Computations of Three-Body Continuum Spectra
We formulate a method to solve the coordinate space Faddeev equations for
positive energies. The method employs hyperspherical coordinates and analytical
expressions for the effective potentials at large distances. Realistic
computations of the parameters of the resonances and the strength functions are
carried out for the Borromean halo nucleus 6He (n+n+alpha) for J = 0+, 0-, 1+,
1-, 2+,2-. PACS numbers: 21.45.+v, 11.80.Jy, 31.15.Ja, 21.60.GxComment: 10 pages, 3 postscript figures, LaTeX, epsf.sty, corrected misprints
in the caption of Fig.
Three-Body Halos in Two Dimensions
A method to study weakly bound three-body quantum systems in two dimensions
is formulated in coordinate space for short-range potentials. Occurrences of
spatially extended structures (halos) are investigated. Borromean systems are
shown to exist in two dimensions for a certain class of potentials. An
extensive numerical investigation shows that a weakly bound two-body state
gives rise to two weakly bound three-body states, a reminiscence of the Efimov
effect in three dimensions. The properties of these two states in the weak
binding limit turn out to be universal.
PACS number(s): 03.65.Ge, 21.45.+v, 31.15.Ja, 02.60NmComment: 9 pages, 2 postscript figures, LaTeX, epsf.st
- …