334 research outputs found

    High-contrast 40 Gb/s operation of a 500 um long silicon carrier-depletion slow wave modulator

    Full text link
    This paper was published in OPTICS LETTERS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.37.003504. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law[EN] In this Letter, we demonstrate a highly efficient, compact, high-contrast and low-loss silicon slow wave modulator based on a traveling-wave Mach¿Zehnder interferometer with two 500 μm long slow wave phase shifters. 40 Gb ∕ s operation with 6.6 dB extinction ratio at quadrature and with an on-chip insertion loss of only 6 dB is shown. These results confirm the benefits of slow light as a means to enhance the performance of silicon modulators based on the plasma dispersion effect.Funding by the European Commission (EC) under project Photonics Electronics Functional Integration on CMOS (HELIOS) (FP7224312) and PROMETEO-2010- 087 R&D Excellency Program are acknowledged. F.Y.G, D.J.T. and G.T.R. acknowledge funding support from the United Kingdom Engineering and Physical Sciences Research Council (EPSRC) under the grant “UK Silicon Photonics”.Brimont, ACJ.; Thomson, DJ.; Gardes, FY.; Fedeli, JM.; Reed, GT.; Martí Sendra, J.; Sanchis Kilders, P. (2012). High-contrast 40 Gb/s operation of a 500 um long silicon carrier-depletion slow wave modulator. Optics Letters. 37(17):3504-3506. https://doi.org/10.1364/OL.37.003504S350435063717Liao, L., Liu, A., Rubin, D., Basak, J., Chetrit, Y., Nguyen, H., … Paniccia, M. (2007). 40 Gbit/s silicon optical modulator for high-speed applications. Electronics Letters, 43(22), 1196. doi:10.1049/el:20072253Gardes, F. Y., Thomson, D. J., Emerson, N. G., & Reed, G. T. (2011). 40 Gb/s silicon photonics modulator for TE and TM polarisations. Optics Express, 19(12), 11804. doi:10.1364/oe.19.011804Thomson, D. J., Gardes, F. Y., Hu, Y., Mashanovich, G., Fournier, M., Grosse, P., … Reed, G. T. (2011). High contrast 40Gbit/s optical modulation in silicon. Optics Express, 19(12), 11507. doi:10.1364/oe.19.011507Brimont, A., Thomson, D. J., Sanchis, P., Herrera, J., Gardes, F. Y., Fedeli, J. M., … Martí, J. (2011). High speed silicon electro-optical modulators enhanced via slow light propagation. Optics Express, 19(21), 20876. doi:10.1364/oe.19.020876Ziebell, M., Marris-Morini, D., Rasigade, G., Fédéli, J.-M., Crozat, P., Cassan, E., … Vivien, L. (2012). 40 Gbit/s low-loss silicon optical modulator based on a pipin diode. Optics Express, 20(10), 10591. doi:10.1364/oe.20.010591Dong, P., Chen, L., & Chen, Y. (2012). High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators. Optics Express, 20(6), 6163. doi:10.1364/oe.20.006163Taylor, H. F. (1999). Enhanced electrooptic modulation efficiency utilizing slow-wave optical propagation. Journal of Lightwave Technology, 17(10), 1875-1883. doi:10.1109/50.793770O’Faolain, L., Beggs, D. M., White, T. P., Kampfrath, T., Kuipers, K., & Krauss, T. F. (2010). Compact Optical Switches and Modulators Based on Dispersion Engineered Photonic Crystals. IEEE Photonics Journal, 2(3), 404-414. doi:10.1109/jphot.2010.2047918Brimont, A., Vicente Galán, J., Maria Escalante, J., Martí, J., & Sanchis, P. (2010). Group-index engineering in silicon corrugated waveguides. Optics Letters, 35(16), 2708. doi:10.1364/ol.35.002708Soref, R., & Bennett, B. (1987). Electrooptical effects in silicon. IEEE Journal of Quantum Electronics, 23(1), 123-129. doi:10.1109/jqe.1987.1073206Nguyen, H. C., Sakai, Y., Shinkawa, M., Ishikura, N., & Baba, T. (2011). 10 Gb/s operation of photonic crystal silicon optical modulators. Optics Express, 19(14), 13000. doi:10.1364/oe.19.013000Dong, P., Liao, S., Liang, H., Qian, W., Wang, X., Shafiiha, R., … Asghari, M. (2010). High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage. Optics Letters, 35(19), 3246. doi:10.1364/ol.35.00324

    Comparison of an X-ray selected sample of massive lensing clusters with the MareNostrum Universe LCDM simulation

    Full text link
    A long-standing problem of strong lensing by galaxy clusters regards the observed high rate of giant gravitational arcs as compared to the predictions in the framework of the "standard" cosmological model. Recently, few other inconsistencies between theoretical expectations and observations have been claimed which regard the large size of the Einstein rings and the high concentrations of few clusters with strong lensing features. All of these problems consistently indicate that observed galaxy clusters may be gravitational lenses stronger than expected. We use clusters extracted from the MareNostrum Universe to build up mock catalogs of galaxy clusters selected through their X-ray flux. We use these objects to estimate the probability distributions of lensing cross sections, Einstein rings, and concentrations for the sample of 12 MACS clusters at z>0.5z>0.5 presented in Ebeling et al. (2007) and discussed in Zitrin et al. (2010). We find that simulated clusters produce 50\sim 50% less arcs than observed clusters do. The medians of the distributions of the Einstein ring sizes differ by 25\sim 25% between simulations and observations. We estimate that, due to cluster triaxiality and orientation biases affecting the lenses with the largest cross sections, the concentrations of the individual MACS clusters inferred from the lensing analysis should be up to a factor of 2\sim 2 larger than expected from the Λ\LambdaCDM model. The arc statistics, the Einstein ring, and the concentration problems in strong lensing clusters are mitigated but not solved on the basis of our analysis. Nevertheless, due to the lack of redshifts for most of the multiple image systems used for modeling the MACS clusters, the results of this work will need to be verified with additional data. The upcoming CLASH program will provide an ideal sample for extending our comparison (abridged).Comment: 11 pages, 9 figures, accepted for publication on A&

    Next Generation Cosmology: Constraints from the Euclid Galaxy Cluster Survey

    Get PDF
    We study the characteristics of the galaxy cluster samples expected from the European Space Agency's Euclid satellite and forecast constraints on cosmological parameters describing a variety of cosmological models. The method used in this paper, based on the Fisher Matrix approach, is the same one used to provide the constraints presented in the Euclid Red Book (Laureijs et al.2011). We describe the analytical approach to compute the selection function of the photometric and spectroscopic cluster surveys. Based on the photometric selection function, we forecast the constraints on a number of cosmological parameter sets corresponding to different extensions of the standard LambdaCDM model. The dynamical evolution of dark energy will be constrained to Delta w_0=0.03 and Delta w_a=0.2 with free curvature Omega_k, resulting in a (w_0,w_a) Figure of Merit (FoM) of 291. Including the Planck CMB covariance matrix improves the constraints to Delta w_0=0.02, Delta w_a=0.07 and a FoM=802. The amplitude of primordial non-Gaussianity, parametrised by f_NL, will be constrained to \Delta f_NL ~ 6.6 for the local shape scenario, from Euclid clusters alone. Using only Euclid clusters, the growth factor parameter \gamma, which signals deviations from GR, will be constrained to Delta \gamma=0.02, and the neutrino density parameter to Delta Omega_\nu=0.0013 (or Delta \sum m_\nu=0.01). We emphasise that knowledge of the observable--mass scaling relation will be crucial to constrain cosmological parameters from a cluster catalogue. The Euclid mission will have a clear advantage in this respect, thanks to its imaging and spectroscopic capabilities that will enable internal mass calibration from weak lensing and the dynamics of cluster galaxies. This information will be further complemented by wide-area multi-wavelength external cluster surveys that will already be available when Euclid flies. [Abridged]Comment: submitted to MNRA

    40 Gbit/s silicon-organic hybrid (SOH) phase modulator

    Get PDF
    A 40 Gbit/s electro-optic modulator is demonstrated. The modulator is based on a slotted silicon waveguide filled with an organic material. The silicon organic hybrid (SOH) approach allows combining highly nonlinear electro-optic organic materials with CMOS-compatible silicon photonics technology

    Silicon slow-light-based photonic mixer for microwave-frequencyconversion applications

    Full text link
    This paper was published in OPTICS LETTERS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.37.001721. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law[EN] We describe and demonstrate experimentally a method for photonic mixing of microwave signals by using a silicon electro-optical Mach¿Zehnder modulator enhanced via slow-light propagation. Slow light with a group index of ~11, achieved in a one-dimensional periodic structure, is exploited to improve the upconversion performance of an input frequency signal from 1 to 10.25 GHz. A minimum transmission point is used to successfully demonstrate the upconversion with very low conversion losses of ~7¿¿dB and excellent quality of the received I/Q modulated QPSK signal with an optimum EVM of ~8%.Financial support from FP7-224312 HELIOS project and Generalitat Valenciana under PROMETEO-2010-087 R&D Excellency Program (NANOMET) are acknowledged. F. Y.Gardes, D. J. Thomson, and G. T. Reed are supported by funding received from the UK EPSRC funding body under the grant “UK Silicon Photonics.” The author A. M. Gutiérrez thanks D. Marpaung for his useful help.Gutiérrez Campo, AM.; Brimont, ACJ.; Herrera Llorente, J.; Aamer, M.; Martí Sendra, J.; Thomson, DJ.; Gardes, FY.... (2012). Silicon slow-light-based photonic mixer for microwave-frequencyconversion applications. Optics Letters. 37(10):1721-1723. https://doi.org/10.1364/OL.37.001721S17211723371

    Indium phosphide based membrane photodetector for optical interconnects on silicon

    Get PDF
    We have designed, fabricated and characterized an InP-based membrane photodetector on an SOI wafer containing a Si-wiring photonic circuit. New results on RF characterization up to 20 GHz are presented. The detector fabrication is compatible with wafer scale processing steps, guaranteeing compatibility towards future generation electronic IC processing

    Silicon-organic hybrid electro-optical devices

    Get PDF
    Organic materials combined with strongly guiding silicon waveguides open the route to highly efficient electro-optical devices. Modulators based on the so-called silicon-organic hybrid (SOH) platform have only recently shown frequency responses up to 100 GHz, high-speed operation beyond 112 Gbit/s with fJ/bit power consumption. In this paper, we review the SOH platform and discuss important devices such as Mach-Zehnder and IQ-modulators based on the linear electro-optic effect. We further show liquid-crystal phase-shifters with a voltage-length product as low as V pi L = 0.06 V.mm and sub-mu W power consumption as required for slow optical switching or tuning optical filters and devices

    Silicon photonic Mach Zehnder modulators for next-generation short-reach optical communication networks

    No full text
    Communication traffic grows relentlessly in today’s networks, and with ever more machines connected to the network, this trend is set to continue for the foreseeable future. It is widely accepted that increasingly faster communications are required at the point of the end users, and consequently optical transmission plays a progressively greater role even in short- and medium-reach networks. Silicon photonic technologies are becoming increasingly attractive for such networks, due to their potential for low cost, energetically efficient, high-speed optical components. A representative example is the silicon-based optical modulator, which has been actively studied. Researchers have demonstrated silicon modulators in different types of structures, such as ring resonators or slow light based devices. These approaches have shown remarkably good performance in terms of modulation efficiency, however their operation could be severely affected by temperature drifts or fabrication errors. Mach-Zehnder modulators (MZM), on the other hand, show good performance and resilience to different environmental conditions. In this paper we present a CMOS-compatible compact silicon MZM. We study the application of the modulator to short-reach interconnects by realizing data modulation using some relevant advanced modulation formats, such as 4-level Pulse Amplitude Modulation (PAM-4) and Discrete Multi-Tone (DMT) modulation and compare the performance of the different systems in transmission

    Low Loss MMI Couplers for High Performance MZI Modulators

    Full text link
    Optical splitters and combiners which can provide precise splitting with low loss, high thermal stability, large optical bandwidth, high compactness and insensitivity to fabrication tolerances are essential components for high performance MZI based optical modulators. In this paper we theoretically and experimentally investigate the MMI and the reduction in optical loss achievable through the use of linear tapers at the input and output ports. Our data shows that losses can be reduced to below 1dB/MMI without affecting the static extinction when employed in MZIs
    corecore