3 research outputs found

    The E3 Ubiquitin Ligase Asb2α in T Helper 2 Cells Negatively Regulates Antitumor Immunity in Colorectal Cancer

    No full text
    International audienceThe escape of cancer cells from host immunosurveillance involves a shift in immune responses, including an imbalance in Th1 and Th2 cells. A Th1-dominated immune response predicts positive outcomes in colorectal cancer. The E3 ubiquitin ligase, Asb2α, is expressed in Th2 cells, but its roles in T-cell maturation and cancer are unclear. We provide evidence that the Th2 master regulator, Gata3, induces Asb2 Loss of Asb2 did not affect Th differentiation ex vivo, but reduced IL4 production from Th2 cells. We found that high ASB2 expression was associated with poor outcome in colorectal cancer. Loss of Asb2 from hematopoietic cells promoted a Th1 response and attenuated colitis-associated tumorigenesis in mice. Diminished Th2 function correlated with increased IFNγ production and an enhanced type 1 antitumor immune response in Asb2-deficient mice. Our work suggests that Asb2α promotes a Th2 phenotype in vivo, which in turn is associated with tumor progression in a mouse model of colitis

    The different natural estrogens promote endothelial healing through distinct cell targets

    No full text
    International audienceThe main estrogen, 17β-estradiol (E2), exerts several beneficial vascular actions through estrogen receptor α (ERα) in endothelial cells. However, the impact of other natural estrogens such as estriol (E3) and estetrol (E4) on arteries remains poorly described. In the present study, we report the effects of E3 and E4 on endothelial healing after carotid artery injuries in vivo. After endovascular injury, which preserves smooth muscle cells (SMCs), E2, E3, and E4 equally stimulated reendothelialization. By contrast, only E2 and E3 accelerated endothelial healing after perivascular injury that destroys both endothelial cells and SMCs, suggesting an important role of this latter cell type in E4’s action, which was confirmed using Cre/lox mice inactivating ERα in SMCs. In addition, E4 mediated its effects independently of ERα membrane-initiated signaling, in contrast with E2. Consistently, RNA sequencing analysis revealed that transcriptomic and cellular signatures in response to E4 profoundly differed from those of E2. Thus, whereas acceleration of endothelial healing by estrogens had been viewed as entirely dependent on endothelial ERα, these results highlight the very specific pharmacological profile of the natural estrogen E4, revealing the importance of dialogue between SMCs and endothelial cells in its arterial protection

    Mutation of Arginine 264 on ERα (Estrogen Receptor Alpha) Selectively Abrogates the Rapid Signaling of Estradiol in the Endothelium Without Altering Fertility

    No full text
    International audienceObjective - ERα (estrogen receptor alpha) exerts nuclear genomic actions and also rapid membrane-initiated steroid signaling. The mutation of the cysteine 451 into alanine in vivo has recently revealed the key role of this ERα palmitoylation site on some vasculoprotective actions of 17β-estradiol (E2) and fertility. Here, we studied the in vivo role of the arginine 260 of ERα which has also been described to be involved in its E2-induced rapid signaling with PI-3K (phosphoinositide 3-kinase) as well as G protein in cultured cell lines. Approach and Results: We generated a mouse model harboring a point mutation of the murine counterpart of this arginine into alanine (R264A-ERα). In contrast to the , the females are fertile with standard hormonal serum levels and normal control of hypothalamus-pituitary ovarian axis. Although R264A-ERα protein abundance was normal, the well-described membrane ERα-dependent actions of estradiol, such as the rapid dilation of mesenteric arteries and the acceleration of endothelial repair of carotid, were abrogated in mice. In striking contrast, E2-regulated gene expression was highly preserved in the uterus and the aorta, revealing intact nuclear/genomic actions in response to E2. Consistently, 2 recognized nuclear ERα-dependent actions of E2, namely atheroma prevention and flow-mediated arterial remodeling were totally preserved. Conclusions - These data underline the exquisite role of arginine 264 of ERα for endothelial membrane-initiated steroid signaling effects of E2 but not for nuclear/genomic actions. This provides the first model of fertile mouse with no overt endocrine abnormalities with specific loss-of-function of rapid ERα signaling in vascular functions
    corecore