161 research outputs found
Cryogenic Design of the 43 T LNCMI Grenoble Hybrid Magnet
AbstractThe association of two inner resistive coils (Polyhelix and Bitter) producing 34.5Â T with an outer NbTi superconducting coil producing 8.5Â T to obtain a 43Â T hybrid magnet is a technical challenge. Accidental failure modes leading to complex electromagnetic behaviors and large transient dynamical forces should be anticipated. These considerations lead to a reinforced design and a thermo-hydraulic strategy to limit the overpressure. The cryostat has been designed with innovative thermo-mechanical supports sustaining the coil at 1.8Â K-1200 hPa and the eddy current shield at 30Â K, both being possibly overloaded by high dynamic forces in the worst accidental failure case
Commissioning of the CMS Magnet
CMS (Compact Muon Solenoid) is one of the large experiments for the LHC at CERN. The superconducting magnet for CMS has been designed to reach a 4 T field in a free bore of 6 m diameter and 12.5 m length with a stored energy of 2.6 GJ at full current. The flux is returned through a 10 000 t yoke comprising of five wheels and two end caps composed of three disks each. The magnet was designed to be assembled and tested in a surface hall, prior to be lowered at 90 m below ground, to its final position in the experimental cavern. The distinctive feature of the cold mass is the four-layer winding, made from a reinforced and stabilized NbTi conductor. The design and construction was carried out by CMS participating institutes through technical and contractual endeavors. Among them CEA Saclay, INFN Genova, ETH Zurich, Fermilab, ITEP Moscow, University of Wisconsin and CERN. The construction of the CMS Magnet, and of the coil in particular, has been completed last year. The magnet has just been powered to full field achieving electrical commissioning. After a brief reminder of the design and construction the first results of the commissioning are reported in this paper
Protection of the 6 T YBCO insert in the 13 T Nb3Sn Fresca II dipole
In the EuCARD project, we aim to construct a dipole magnet in YBCO producing
6 T in the background field of a 13 T Nb3Sn dipole FRESCA II. This paper
reviews the quench analysis and protection of the YBCO coil. In addition, a
recommendation for the protection system of the YBCO coil is presented.Comment: 6 pages, Contribution to WAMSDO 2013: Workshop on Accelerator Magnet,
Superconductor, Design and Optimization; 15 - 16 Jan 2013, CERN, Geneva,
Switzerlan
Decreased production of TNF-alpha by lymph node cells indicates experimental autoimmune encephalomyelitis remission in Lewis rats
Experimental autoimmune encephalomyelitis (EAE) is mediated by CD4+ Th1 cells that mainly secrete IFN-γ and TNF-α, important cytokines in the pathophysiology of the disease. Spontaneous remission is, in part, attributed to the down regulation of IFN-γ and TNF-α by TGF-β. In the current paper, we compared weight, histopathology and immunological parameters during the acute and recovery phases of EAE to establish the best biomarker for clinical remission. Female Lewis rats were immunised with myelin basic protein (MBP) emulsified with complete Freund's adjuvant. Animals were evaluated daily for clinical score and weight prior to euthanisation. All immunised animals developed the expected characteristics of EAE during the acute phase, including significant weight loss and high clinical scores. Disease remission was associated with a significant reduction in clinical scores, although immunised rats did not regain their initial weight values. Brain inflammatory infiltrates were higher during the acute phase. During the remission phase, anti-myelin antibody levels increased, whereas TNF-α and IFN-γ production by lymph node cells cultured with MBP or concanavalin A, respectively, decreased. The most significant difference observed between the acute and recovery phases was in the induction of TNF-α levels in MBP-stimulated cultures. Therefore, the in vitro production of this cytokine could be used as a biomarker for EAE remission
European Strategy for Particle Physics -- Accelerator R&D Roadmap
The 2020 update of the European Strategy for Particle Physics emphasised the
importance of an intensified and well-coordinated programme of accelerator R&D,
supporting the design and delivery of future particle accelerators in a timely,
affordable and sustainable way. This report sets out a roadmap for European
accelerator R&D for the next five to ten years, covering five topical areas
identified in the Strategy update. The R&D objectives include: improvement of
the performance and cost-performance of magnet and radio-frequency acceleration
systems; investigations of the potential of laser / plasma acceleration and
energy-recovery linac techniques; and development of new concepts for muon
beams and muon colliders. The goal of the roadmap is to document the collective
view of the field on the next steps for the R&D programme, and to provide the
evidence base to support subsequent decisions on prioritisation, resourcing and
implementation.Comment: 270 pages, 58 figures. Editor: N. Mounet. LDG chair: D. Newbold.
Panel chairs: P. V\'edrine (HFM), S. Bousson (RF), R. Assmann (plasma), D.
Schulte (muon), M. Klein (ERL). Panel editors: B. Baudouy (HFM), L. Bottura
(HFM), S. Bousson (RF), G. Burt (RF), R. Assmann (plasma), E. Gschwendtner
(plasma), R. Ischebeck (plasma), C. Rogers (muon), D. Schulte (muon), M.
Klein (ERL
- âŠ