14 research outputs found

    Beneficial effects of exercise training in heart failure are lost in male diabetic rats

    No full text
    International audienceExercise training has been demonstrated to have beneficial effects in patients with heart failure (HF) or diabetes. However, it is unknown whether diabetic patients with HF will benefit from exercise training. Male Wistar rats were fed either a standard (Sham, n = 53) or high-fat, high-sucrose diet ( n = 66) for 6 mo. After 2 mo of diet, the rats were already diabetic. Rats were then randomly subjected to either myocardial infarction by coronary artery ligation (MI) or sham operation. Two months later, heart failure was documented by echocardiography and animals were randomly subjected to exercise training with treadmill for an additional 8 wk or remained sedentary. At the end, rats were euthanized and tissues were assayed by RT-PCR, immunoblotting, spectrophotometry, and immunohistology. MI induced a similar decrease in ejection fraction in diabetic and lean animals but a higher premature mortality in the diabetic group. Exercise for 8 wk resulted in a higher working power developed by MI animals with diabetes and improved glycaemia but not ejection fraction or pathological phenotype. In contrast, exercise improved the ejection fraction and increased adaptive hypertrophy after MI in the lean group. Trained diabetic rats with MI were nevertheless able to develop cardiomyocyte hypertrophy but without angiogenic responses. Exercise improved stress markers and cardiac energy metabolism in lean but not diabetic-MI rats. Hence, following HF, the benefits of exercise training on cardiac function are blunted in diabetic animals. In conclusion, exercise training only improved the myocardial profile of infarcted lean rats fed the standard diet. NEW & NOTEWORTHY Exercise training is beneficial in patients with heart failure (HF) or diabetes. However, less is known of the possible benefit of exercise training for HF patients with diabetes. Using a rat model where both diabetes and MI had been induced, we showed that 2 mo after MI, 8 wk of exercise training failed to improve cardiac function and metabolism in diabetic animals in contrast to lean animals

    Identification of a pharmacological inhibitor of Epac1 that protects the heart against acute and chronic models of cardiac stress

    No full text
    International audienceAims: Recent studies reported that cAMP-binding protein Epac1-deficient mice were protected against various forms of cardiac stress, suggesting that pharmacological inhibition of Epac1 could be beneficial for the treatment of cardiac diseases. To test this assumption, we characterized an Epac1-selective inhibitory compound and investigated its potential cardioprotective properties.Methods and results: We used the Epac1-BRET (bioluminescence resonance energy transfer) for searching for non-cyclic nucleotide Epac1 modulators. A thieno[2,3-b]pyridine derivative, designated as AM-001 was identified as a non-competitive inhibitor of Epac1. AM-001 has no antagonist effect on Epac2 or protein kinase A activity. This small molecule prevents the activation of the Epac1 downstream effector Rap1 in cultured cells, in response to the Epac1 preferential agonist, 8-CPT-AM. In addition, we found that AM-001 inhibited Epac1-dependent deleterious effects such as cardiomyocyte hypertrophy and death. Importantly, AM-001-mediated inhibition of Epac1 reduces infarct size after mouse myocardial ischaemia/reperfusion injury. Finally, AM-001 attenuates cardiac hypertrophy, inflammation and fibrosis, and improves cardiac function during chronic ÎČ-adrenergic receptor activation with isoprenaline (ISO) in mice. At the molecular level, ISO increased Epac1-G protein-coupled receptor kinase 5 (GRK5) interaction and induced GRK5 nuclear import and histone deacetylase type 5 (HDAC5) nuclear export to promote the activity of the prohypertrophic transcription factor, myocyte enhancer factor 2 (MEF2). Inversely, AM-001 prevented the non-canonical action of GRK5 on HDAC5 cytoplasmic shuttle to down-regulate MEF2 transcriptional activity.Conclusion: Our study represents a ‘proof-of-concept’ for the therapeutic effectiveness of inhibiting Epac1 activity in cardiac disease using small-molecule pharmacotherapy

    Multifunctional Mitochondrial Epac1 Controls Myocardial Cell Death

    No full text
    International audienceRationale: Although the second messenger cyclic AMP (cAMP) is physiologically beneficial in the heart, it largely contributes to cardiac disease progression when dysregulated. Current evidence suggests that cAMP is produced within mitochondria. However, mitochondrial cAMP signaling and its involvement in cardiac pathophysiology are far from being understood. Objective: To investigate the role of MitEpac1 (mitochondrial exchange protein directly activated by cAMP 1) in ischemia/reperfusion injury. Methods and Results: We show that Epac1 (exchange protein directly activated by cAMP 1) genetic ablation (Epac1−/−) protects against experimental myocardial ischemia/reperfusion injury with reduced infarct size and cardiomyocyte apoptosis. As observed in vivo, Epac1 inhibition prevents hypoxia/reoxygenation–induced adult cardiomyocyte apoptosis. Interestingly, a deleted form of Epac1 in its mitochondrial-targeting sequence protects against hypoxia/reoxygenation–induced cell death. Mechanistically, Epac1 favors Ca2+ exchange between the endoplasmic reticulum and the mitochondrion, by increasing interaction with a macromolecular complex composed of the VDAC1 (voltage-dependent anion channel 1), the GRP75 (chaperone glucose-regulated protein 75), and the IP3R1 (inositol-1,4,5-triphosphate receptor 1), leading to mitochondrial Ca2+ overload and opening of the mitochondrial permeability transition pore. In addition, our findings demonstrate that MitEpac1 inhibits isocitrate dehydrogenase 2 via the mitochondrial recruitment of CaMKII (Ca2+/calmodulin-dependent protein kinase II), which decreases nicotinamide adenine dinucleotide phosphate hydrogen synthesis, thereby, reducing the antioxidant capabilities of the cardiomyocyte. Conclusions: Our results reveal the existence, within mitochondria, of different cAMP–Epac1 microdomains that control myocardial cell death. In addition, our findings suggest Epac1 as a promising target for the treatment of ischemia-induced myocardial damage

    Mitochondrial 4-HNE derived from MAO-A promotes mitoCa2+ overload in chronic postischemic cardiac remodeling

    No full text
    International audienceChronic remodeling postmyocardial infarction consists in various maladaptive changes including interstitial fibrosis, cardiomyocyte death and mitochondrial dysfunction that lead to heart failure (HF). Reactive aldehydes such as 4-hydroxynonenal (4-HNE) are critical mediators of mitochondrial dysfunction but the sources of mitochondrial 4-HNE in cardiac diseases together with its mechanisms of action remain poorly understood. Here, we evaluated whether the mitochondrial enzyme monoamine oxidase-A (MAO-A), which generates H2O2 as a by-product of catecholamine metabolism, is a source of deleterious 4-HNE in HF. We found that MAO-A activation increased mitochondrial ROS and promoted local 4-HNE production inside the mitochondria through cardiolipin peroxidation in primary cardiomyocytes. Deleterious effects of MAO-A/4-HNE on cardiac dysfunction were prevented by activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2), the main enzyme for 4-HNE metabolism. Mechanistically, MAO-A-derived 4-HNE bound to newly identified targets VDAC and MCU to promote ER-mitochondria contact sites and MCU higher-order complex formation. The resulting mitochondrial Ca2+ accumulation participated in mitochondrial respiratory dysfunction and loss of membrane potential, as shown with the protective effects of the MCU inhibitor, RU360. Most interestingly, these findings were recapitulated in a chronic model of ischemic remodeling where pharmacological or genetic inhibition of MAO-A protected the mice from 4-HNE accumulation, MCU oligomer formation and Ca2+ overload, thus mitigating ventricular dysfunction. To our knowledge, these are the first evidences linking MAO-A activation to mitoCa2+ mishandling through local 4-HNE production, contributing to energetic failure and postischemic remodeling

    Aldosterone Inhibits the Fetal Program and Increases Hypertrophy in the Heart of Hypertensive Mice

    Get PDF
    <div><h3>Background</h3><p>Arterial hypertension (AH) induces cardiac hypertrophy and reactivation of “fetal” gene expression. In rodent heart, alpha-Myosin Heavy Chain (MyHC) and its micro-RNA miR-208a regulate the expression of beta-MyHC and of its intronic miR-208b. However, the role of aldosterone in these processes remains unclear.</p> <h3>Methodology/Principal Findings</h3><p>RT-PCR and western-blot were used to investigate the genes modulated by arterial hypertension and cardiac hyperaldosteronism. We developed a model of double-transgenic mice (AS-Ren) with cardiac hyperaldosteronism (AS mice) and systemic hypertension (Ren). AS-Ren mice had increased (x2) angiotensin II in plasma and increased (x2) aldosterone in heart. Ren and AS-Ren mice had a robust and similar hypertension (+70%) versus their controls. Anatomical data and echocardiography showed a worsening of cardiac hypertrophy (+41%) in AS-Ren mice (P<0.05 vs Ren). The increase of ANP (x 2.5; P<0.01) mRNA observed in Ren mice was blunted in AS-Ren mice. This non-induction of antitrophic natriuretic peptides may be involved in the higher trophic cardiac response in AS-Ren mice, as indicated by the markedly reduced cardiac hypertrophy in ANP-infused AS-Ren mice for one month. Besides, the AH-induced increase of ßMyHC and its intronic miRNA-208b was prevented in AS-Ren. The inhibition of miR 208a (−75%, p<0.001) in AS-Ren mice compared to AS was associated with increased Sox 6 mRNA (x 1.34; p<0.05), an inhibitor of ßMyHC transcription. Eplerenone prevented all aldosterone-dependent effects.</p> <h3>Conclusions/Significance</h3><p>Our results indicate that increased aldosterone in heart inhibits the induction of atrial natriuretic peptide expression, via the mineralocorticoid receptor. This worsens cardiac hypertrophy without changing blood pressure. Moreover, this work reveals an original aldosterone-dependent inhibition of miR-208a in hypertension, resulting in the inhibition of ÎČ-myosin heavy chain expression through the induction of its transcriptional repressor Sox6. Thus, aldosterone inhibits the fetal program and increases cardiac hypertrophy in hypertensive mice.</p> </div

    Effect of aldosterone on CREB expression.

    No full text
    <p>(<b>A</b>): quantitative RT-PCR analysis of CREB in 9 month-old mouse ventricles and (<b>B</b>) representative immunoblots of p-CREB, CREB and GAPDH levels in ventricle protein extracts. Abbreviations and symbols as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038197#pone-0038197-g001" target="_blank">Figure 1</a>.</p

    Cardiac hyperaldosteronism inhibits hypertension-induced ÎČ-MyHC expression.

    No full text
    <p>The expression of ÎČ-MyHC was analysed in 9 month-old mice by: (<b>A</b>) quantitative RT-PCR in ventricles of control mice (WT, AS), of Ren mice and AS-Ren mice untreated or treated with eplerenone (100 mg/kg/day) for 30 days, (<b>B</b>) quantification of ÎČ-MyHC and total MyHC protein levels in ventricles after immunoblot (representative signals are shown), (<b>C</b>) quantitative RT-PCR in NMCM stimulated by 10<sup>−5 </sup>M AngII in the absence or presence of aldosterone (data are mean of 3 independent experiments), Abbreviations and symbols as in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0038197#pone-0038197-g001" target="_blank">Figure 1</a>. n = 10–12/group.</p
    corecore