109 research outputs found

    The Inflammasome: First Line of the Immune Response to Cell Stress

    Get PDF
    The NALP3-inflammasome is a protein complex that stimulates caspase-1 activation to promote the processing and secretion of proinflammatory cytokines. Recent work indicates that the NALP3-inflammasome can be activated by endogenous “danger signals” as well as compounds associated with pathogens (Kanneganti et al., 2006; Mariathasan et al., 2006; Martinon et al., 2006; Sutterwala et al., 2006). Here, we discuss new insights into the regulation of caspase-1 activity in the inflammatory response

    Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome

    Get PDF
    Pseudomonas aeruginosa is a Gram-negative bacterium that causes opportunistic infections in immunocompromised individuals. P. aeruginosa employs a type III secretion system to inject effector molecules into the cytoplasm of the host cell. This interaction with the host cell leads to inflammatory responses that eventually result in cell death. We show that infection of macrophages with P. aeruginosa results in activation of caspase-1 in an IPAF-dependent, but flagellin-independent, manner. Macrophages deficient in IPAF or caspase-1 were markedly resistant to P. aeruginosa–induced cell death and release of the proinflammatory cytokine interleukin (IL)-1β. A subset of P. aeruginosa isolates express the effector molecule exoenzyme U (ExoU), which we demonstrate is capable of inhibiting caspase-1–driven proinflammatory cytokine production. This study shows a key role for IPAF and capase-1 in innate immune responses to the pathogen P. aeruginosa, and also demonstrates that virulent ExoU-expressing strains of P. aeruginosa can circumvent this innate immune response

    Expression of Interleukin-10 in Intestinal Lymphocytes Detected by an Interleukin-10 Reporter Knockin tiger Mouse

    Get PDF
    SummaryTo identify interleukin-10 (IL-10)-producing cells in vivo, we generated a knockin mouse where an internal ribosome entry site (IRES) green fluorescence protein (GFP) element was inserted immediately before the polyadenylation site of the IL-10 gene. GFP fluorescence in cells from these mice was found to correlate positively with IL-10 protein expression. With this model, we found that after multiple T cell receptor (TCR) stimulations, strong expression of IL-10 was produced specifically by intraepithelial lymphocytes (IEL) in the small intestine and colonic lamina propria lymphocytes (cLPL). We found that anti-CD3 treatment induces T regulatory cell 1 (Tr1)-like cells in small intestinal IEL (sIEL) and led to the accumulation of naturally occurring regulatory T (nTreg) cells in colonic LPL (cLPL). These findings highlight the intestine as a unique site for induction of IL-10-producing T cells, which play a critical role in the regulation of inflammation in the gut

    Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis

    Get PDF
    Caspase-1 is activated by a variety of stimuli after the assembly of the “inflammasome,” an activating platform made up of a complex of the NOD-LRR family of proteins. Caspase-1 is required for the secretion of proinflammatory cytokines, such as interleukin (IL)-1β and IL-18, and is involved in the control of many bacterial infections. Paradoxically, however, its absence has been reported to confer resistance to oral infection by Salmonella typhimurium. We show here that absence of caspase-1 or components of the inflammasome does not result in resistance to oral infection by S. typhimurium, but rather, leads to increased susceptibility to infection

    Cutting Edge: NLRP12 Controls Dendritic and Myeloid Cell Migration To Affect Contact Hypersensitivity

    Get PDF
    Nucleotide-binding domain leucine-rich repeat (NLR) proteins are regulators of inflammation and immunity. Although first described 8 y ago, a physiologic role for NLRP12 has remained elusive until now. We find that murine Nlrp12, an NLR linked to atopic dermatitis and hereditary periodic fever in humans, is prominently expressed in dendritic cells (DCs) and neutrophils. Nlrp12-deficient mice exhibit attenuated inflammatory responses in two models of contact hypersensitivity that exhibit features of allergic dermatitis. This cannot be attributed to defective Ag processing/presentation, inflammasome activation, or measurable changes in other inflammatory cytokines. Rather, Nlrp12(-/-) DCs display a significantly reduced capacity to migrate to draining lymph nodes. Both DCs and neutrophils fail to respond to chemokines in vitro. These findings indicate that NLRP12 is important in maintaining neutrophils and peripheral DCs in a migration-competent state

    Malarial Hemozoin Activates the NLRP3 Inflammasome through Lyn and Syk Kinases

    Get PDF
    The intraerythrocytic parasite Plasmodium—the causative agent of malaria—produces an inorganic crystal called hemozoin (Hz) during the heme detoxification process, which is released into the circulation during erythrocyte lysis. Hz is rapidly ingested by phagocytes and induces the production of several pro-inflammatory mediators such as interleukin-1β (IL-1β). However, the mechanism regulating Hz recognition and IL-1β maturation has not been identified. Here, we show that Hz induces IL-1β production. Using knockout mice, we showed that Hz-induced IL-1β and inflammation are dependent on NOD-like receptor containing pyrin domain 3 (NLRP3), ASC and caspase-1, but not NLRC4 (NLR containing CARD domain). Furthermore, the absence of NLRP3 or IL-1β augmented survival to malaria caused by P. chabaudi adami DS. Although much has been discovered regarding the NLRP3 inflammasome induction, the mechanism whereby this intracellular multimolecular complex is activated remains unclear. We further demonstrate, using pharmacological and genetic intervention, that the tyrosine kinases Syk and Lyn play a critical role in activation of this inflammasome. These findings not only identify one way by which the immune system is alerted to malarial infection but also are one of the first to suggest a role for tyrosine kinase signaling pathways in regulation of the NLRP3 inflammasome

    Effects of ex-vivo and in-vivo treatment with probiotics on the inflammasome in dogs with chronic enteropathy

    Get PDF
    Inflammasomes coordinate the maturation of IL-1β and IL-18 in response to danger signals. They are vital for maintenance of intestinal homeostasis and have been linked to chronic intestinal inflammation in humans. Probiotics have been advocated as treatment in intestinal inflammation. So far, no study has investigated the role of the inflammasome in canine chronic enteropathy (CE). In this study the intestinal expression of inflammasome components was assessed in CE dogs compared to controls, when treated with probiotic Enterococcus faecium (EF) ex-vivo and in-vivo. RNA extraction from endoscopic biopsies and reverse-transcriptase quantitative PCR was performed for NLRP3, casp-1, IL-1β and IL-18. Immunohistochemistry was performed to investigate protein expression in tissues. Gene expression of casp-1 and NLRP3 was lower in CE samples than controls. Ex-vivo treatment with EF reduced NLRP3 expression in control samples. Treatment of CE dogs with EF alongside dietary intervention had no effect on gene expression. In contrast, IL-1β protein expression in CE decreased with dietary treatment (but not with probiotics). The results of this study suggest that the inflammasome or its components may be partially involved in the inflammatory process seen in CE, but distinct from intestinal inflammation in humans
    corecore