42 research outputs found
An analysis of domestic water consumption in Jaipur, India
Aim: To explore the relation between water consumption and water use behaviour and attitudes, and devices applied in households in urban areas in India.
Methodology and study site: This paper presents the results of a domestic water consumption survey carried out in Jaipur, India. A questionnaire containing over 60 questions was developed to collect information on households’ characteristics (e.g. family size, household type, and number of children), indoor and outdoor water use activities and their respective frequencies and durations. Information was also gathered on the volume of water used in each of these activities. Over 90 households of different types (standalone houses and apartments in a university campus and Jaipur city) participated in the survey. The survey results were analysed using cluster analysis and one-way analysis of variance (ANOVA).
Results: The results show that the per capita consumption varies considerably with household type and size. The average water consumption was 183 and 215 litres/person/day for standalone households and apartments, respectively. Water used in bathing and WC's represent the highest proportion of water consumption in both stand-alone houses and apartments. Over 40% of the households reported no use of showers. The per capita water consumption is inversely related to family size especially in stand-alone houses.
Conclusion: The information pertaining to water use habits and the qualitative and quantitative analysis can be used as an input to a proposed domestic water efficiency tool (DoWET) which can generate optimal water efficient composite strategies keeping in view a range of sustainability indicators including water saving potential, cost and associated energy consumption of the water saving devices and fixtures available in India.The work presented here was undertaken to inform the research being carried out in Water4India project supported by EC as FP7 project bearing grant agreement no: 308496
Community acquired pneumonia: risk factors associated with mortality in a tertiary care hospitalized patients
OBJECTIVE: To evaluate risk factors associated with mortality in patients hospitalized with CommunityAcquired Pneumonia (CAP) from a developing country.
METHODS: An observational study was conducted on adult patients admitted with a diagnosis of CAP from January 2002 to August 2003 at Aga Khan University hospital, Karachi, Pakistan. Clinical records were reviewed for demographic characteristics, clinical and laboratory features, hospital course, and risk factors associated with mortality.
RESULTS: A total of 329 patients (187 males) were admitted with CAP. Two-third of patients had underlying co-morbid medical illnesses. Complications developed in 15.7% cases and the overall mortality rate was 11%. Risk factors were identified on initial clinical assessment, laboratory and radiological features and during hospital course. On admission elevated blood urea, new onset of confusion, abnormal liver function test, low serum albumin, cardiomegaly and presence of underlying malignancy were strongly associated with increased mortality. Failure to respond to therapy was associated with a high risk of mortality as depicted by complication during hospital stay (Odds Ratio = 23.3, 95% Confidence Interval = 10.3-52.8), need for mechanical ventilation (OR = 17.1, 95% CI = 7.4-39.8) and need for intensive care unit (OR = 9, 95% CI = 4.2-19.3).
CONCLUSIONS: Abnormal liver function test, low albumin and presence of cardiomegaly were more significant mortality risk factors than age, respiratory rate and blood pressure. Elevated blood urea and confusion remain strong risk factors on admission. Failure of response to therapy and onset of complications heralded a high risk of death
Scenario-based sustainable water management and urban regeneration
Copyright © ICE PublishingDeployable output (source availability) from water resources in north west England is predicted to decrease over the next 25 years. Alternative supply management strategies are planned to help avoid a deficit in the supply–demand balance within the region but have yet to be considered in detail. This paper assesses the contribution of such an alternative supply strategy at local level on the water resource supply–demand balance at regional level based on a proposed urban regeneration site in north west England. Various water conservation and reuse measures are investigated considering local and regional conditions and constraints. Four future scenarios are presented and used to describe how the future might be (rather than how it will be), to allow an assessment to be made of how current ‘sustainable solutions’ might cope whatever the future holds. The analysis determines the solution contributions under each future and indicates that some strategies will deliver their full intended benefits under scenarios least expected but most needed. It is recommended that to help reduce the regional supply–demand deficit and maximise system resilience to future change, a wide range of water demand management measures should be incorporated on this and other sites
Appraising infrastructure for new towns in Ireland
Copyright © 2013 ICE Publishing Ltd. Permission is granted by ICE Publishing to print one copy for personal use. Any other use of these PDF files is subject to reprint fees.Over a 20 year period 1996–2016, a new 223 ha town is being developed 10 miles west of Dublin's city centre on the south side of Lucan, County Dublin, in the Republic of Ireland (ROI). This €4 billion ‘Adamstown’ development is the first of four planning schemes in ROI to be approved as a strategic development zone – an integrated planning framework deemed suitable for creating sustainable neighbourhoods in sites of strategic economic or social importance to the state. The creation of sustainable neighbourhoods in ROI is facilitated through the implementation of a checklist of 60 indicators. This paper critically examines the attempts being made to consider sustainability within the development's overall infrastructure plan, specifically: transport, energy and water services, information technology and waste. Inadequacies in the existing development are linked to shortfalls in the sustainability checklist, by way of a comparison of infrastructure-related indicators from the ROI checklist with those derived for the UK and exemplar European projects (i.e. Bedzed, UK and Freiberg, Germany). The subsequent legacy for future residents of Adamstown is then considered in the context of ‘what if’ scenarios
Urban futures and the code for sustainable homes
Copyright © 2012 ICE Publishing Ltd. Permission is granted by ICE Publishing to print one copy for personal use. Any other use of these PDF files is subject to reprint fees.A 6?6 ha (66 000 m2) regeneration site, commonly referred to as Luneside East, is to be turned from a run down,
economically under-achieving area of Lancaster, UK, into a new, distinctive, vibrant, sustainable quarter of the city. As
a result several aspects of water planning for 350 new homes and 8000 m2 of workspace needed to be considered
before any infrastructure investment was undertaken. This included assessment of the future capacity requirements
(i.e. inflows and outflows) for water infrastructure (i.e. mains water supply, wastewater disposal, rainwater storage
and stormwater disposal) much of which will be located underground. This paper looks at the implications of various
water management strategies on the Luneside East site (e.g. water-efficient appliances, greywater recycling and
rainwater harvesting) in line with current policy measures that focus on technology changes alone (e.g. the code for
sustainable homes). Based on these findings this paper outlines some basic implications for technological resilience
discussed in the context of four ‘world views’ – that is, the urban futures scenarios considered in this special issue.
Conclusions are drawn as to how far this can take engineers, planners and developers in understanding and planning
for resilient water infrastructure within a development like Luneside East
Assessing and modelling the influence of household characteristics on per capita water consumption
This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.First online: 26 April 2016Sustainable urban water supply management requires, ideally, accurate evidence based estimations on per capita consumption and a good understanding of the factors influencing the consumption. The information can then be used to achieve improved water demand forecasts. Water consumption patterns in the developed countries have been extensively investigated. However, very little is known for the developing world. This paper investigates per capita water consumption resulting from water use activities in different types of households typically found in urban areas of the developing world. A data collection programme was executed for 407 households to extract information on household characteristics, water user behaviour and intensity and the nature of indoor and outdoor water use activities. The rigorous statistical analysis of the data shows that per capita water consumption increases with income: 241, 272 and 290 l/capita/day for low, medium and high income households, respectively. Additionally, the results suggest that per capita consumption increases with the number of adult female members in the household and almost one-third of consumption is via taps. The collected data has been used to develop statistical models using two different regression techniques: multiple linear (STEPWISE) and evolutionary polynomial regression (EPR). The inclusion of demographic parameters in the developed models considerably improved the prediction accuracy. Two of the best performing models are used to forecast the water demand for the city, using four future scenarios: market forces, fortress world, policy reform and great transition. The results suggest that the domestic water demand would be highest in the fortress world scenario due to the increase in population and size of built-up area
Seasonal Variation of Rainy and Dry Season Per Capita Water Consumption in Freetown City Sierra Leone
Ensuring a sustainable urban water supply for developing/low-income countries requires an understanding of the factors affecting water consumption and technical evidence of individual consumption which can be used to design an improved water demand projection. This paper compared dry and rainy season water sources available for consumption and the end-use volume by each person in the different income groups. The study used a questionnaire survey to gather household data for a total of 398 households, which was analysed to develop the relationship between per capita water consumption characteristics: Socio-economic status, demographics, water use behaviour around indoor and outdoor water use activities. In the per capita water consumption patterns of Freetown, a seasonal variation was found: In the rainy season, per capita water consumption was found to be about 7% higher than the consumption for the full sample, whilst in the dry season, per capita water consumption was almost 14% lower than the full survey. The statistical analysis of the data shows that the average per capita water consumption for both households increases with income for informal slum-, low-, middle- and high-income households without piped connection (73, 78, 94 and 112 L/capita/day) and with connection (91, 97, 113 and 133 L/capita/day), respectively. The collected data have been used to develop 20 statistical models using the multiple linear stepwise regression method for selecting the best predictor variable from the data set. It can be seen from the values that the strongest significant relationships of per capita consumption are with the number of occupants (R = −0.728) in the household and time spent to fetch water for use (R = −0.711). Furthermore, the results reveal that the highest fraction of end use is showering (18%), then bathing (16%), followed by toilet use (14%). This is not in agreement with many developing countries where toilet use represents the largest component of indoor end use
A comparative sustainability evaluation of alternative configurations of an urban nitrogen removal solution targeting different pathways
Limiting the introduction of excess nitrogen to natural water sources is a growing priority for water security and environmental health. This poses particular difficulties in urban environments where available land for potential solutions is limited. A promising option is the integrated fixed-film activated sludge (IFAS) process that requires only a small footprint and is capable of high total nitrogen (TN) removal through multiple pathways. In light of the sustainable development goals set out by the United Nations, the present work has sought to compare the sustainability of two TN removal pathways by comparing the technical, economic and environmental performance of their optimum configurations. Through modelling, a single-stage configuration demonstrated the capacity to achieve an effluent TN concentration of 8.7 mg/L by the simultaneous nitrification denitrification pathway when a dissolved oxygen concentration of 3.5 mg/L was provided. Addition of a post-anoxic stage at equal volume to the aerobic stage (1:1 aerobic to anoxic ratio) to target conventional nitrification denitrification could realise an effluent TN concentration of 4.2 mg/L when DO was increased to 4.5 mg/L, although 5.8 mg/L of effluent TN could be achieved with only a 5:1 ratio. In terms of environmental burden and economic costs, analysis of the system's life-cycle under these different configurations indicated considerable asymmetry of the two pathways during the operational phase due mainly to the increased aeration. However in spite of this, the two conventional configurations were ultimately both shown to be more sustainable than that of the simultaneous pathway due to the greater TN removal capacity afforded.Sanitary Engineerin