6,329 research outputs found

    Role of chondroitin sulfate proteoglycans (CSPGs) in synaptic plasticity and neurotransmission in mammalian spinal cord.

    Get PDF
    Chronic unilateral hemisection (HX) of the adult rat spinal cord diminishes conduction through intact fibers in the ventrolateral funiculus (VLF) contralateral to HX. Intraspinal injections of Chondroitinase-ABC, known to digest chondroitin sulfate proteoglycans (CSPGs) in the vicinity of injury, prevented this decline of axonal conduction. This was associated with improved locomotor function. We further injected three purified CSPGs into the lateral column of the uninjured cord at T10: NG2 and neurocan, which increase in the vicinity of a spinal injury, and aggrecan, which decreases. Intraspinal injection of NG2 acutely depressed axonal conduction through the injection region in a dose dependent manner. Similar injections of saline, aggrecan, or neurocan had no significant effect. These results identify a novel acute action of CSPGs on axonal conduction in spinal cord, and suggest that antagonism of proteoglycans reverses or prevents the decline of axonal conduction, in addition to stimulating axonal growth

    DeWitt-Schwinger Renormalization and Vacuum Polarization in d Dimensions

    Full text link
    Calculation of the vacuum polarization, ,andexpectationvalueofthestresstensor,, and expectation value of the stress tensor, , has seen a recent resurgence, notably for black hole spacetimes. To date, most calculations of this type have been done only in four dimensions. Extending these calculations to dd dimensions includes dd-dimensional renormalization. Typically, the renormalizing terms are found from Christensen's covariant point splitting method for the DeWitt-Schwinger expansion. However, some manipulation is required to put the correct terms into a form that is compatible with problems of the vacuum polarization type. Here, after a review of the current state of affairs for and and calculations and a thorough introduction to the method of calculating ,acompactexpressionfortheDeWittSchwingerrenormalizationtermssuitableforuseinevendimensionalspacetimesisderived.Thisformulashouldbeusefulforcalculationsof, a compact expression for the DeWitt-Schwinger renormalization terms suitable for use in even-dimensional spacetimes is derived. This formula should be useful for calculations of and inevendimensions,andtherenormalizationtermsareshownexplicitlyforfourandsixdimensions.Furthermore,useofthefinitetermsoftheDeWittSchwingerexpansionasanapproximationto in even dimensions, and the renormalization terms are shown explicitly for four and six dimensions. Furthermore, use of the finite terms of the DeWitt-Schwinger expansion as an approximation to for certain spacetimes is discussed, with application to four and five dimensions.Comment: 21 pages, 2 tables, 3 figures. References added, rewritten to clarify some points, corrections performed, our claim in the first version that there is an error in Anderson's calculations is incorrec

    On the injectivity of the circular Radon transform arising in thermoacoustic tomography

    Full text link
    The circular Radon transform integrates a function over the set of all spheres with a given set of centers. The problem of injectivity of this transform (as well as inversion formulas, range descriptions, etc.) arises in many fields from approximation theory to integral geometry, to inverse problems for PDEs, and recently to newly developing types of tomography. The article discusses known and provides new results that one can obtain by methods that essentially involve only the finite speed of propagation and domain dependence for the wave equation.Comment: To appear in Inverse Problem

    Optical Properties of Heavy Fermion Systems with SDW Order

    Full text link
    The dynamical conductivity σ(ω)\sigma (\omega), reflectivity R(ω)R(\omega), and tunneling density of states N(ω)N(\omega) of strongly correlated systems (like heavy fermions) with a spin-density wave (SDW) magnetic order are studied as a function of impurity scattering rate and temperature. The theory is generalized to include strong coupling effects in the SDW order. The results are discussed in the light of optical experiments on heavy-fermion SDW materials. With some modifications the proposed theory is applicable also to heavy fermions with localized antiferromagnetic (LAF) order.Comment: 9 pages, 10 figure

    The Weddelll Sea and Dronning Maud Land (WSDML) Regional Working Group Virtual Science Workshop, 20-23 October, 2020.

    Get PDF
    Workshop report from the Weddell Sea and Dronning Maud Land (WSDML) Regional Working Group virtual science workshop, held 20-23 October 2020

    Electronic Structure and Charge Dynamics of Huesler Alloy Fe2TiSn Probed by Infrared and Optical Spectroscopy

    Full text link
    We report on the electrodynamics of a Heusler alloy Fe2TiSn probed over four decades in energy: from the far infrared to the ultraviolet. Our results do not support the suggestion of Kondo-lattice behavior inferred from specific heat measurements. Instead, we find a conventional Drude-like response of free carriers, with two additional absorption bands centered at around 0.1 and 0.87 eV. The latter feature can be interpreted as excitations across a pseudogap, in accord with band structure calculations.Comment: 3 pages, 4 figure

    Spin and charge excitations in incommensurate spin density waves

    Full text link
    Collective excitations both for spin- and charge-channels are investigated in incommensurate spin density wave (or stripe) states on two-dimensional Hubbard model. By random phase approximation, the dynamical susceptibility \chi(q,\omega) is calculated for full range of (q,\omega) with including all higher harmonics components. An intricate landscape of the spectra in \chi(q,\omega) is obtained. We discuss the anisotropy of the dispersion cones for spin wave excitations, and for the phason excitation related to the motion of the stripe line. Inelastic neutron experiments on Cr and its alloys and stripe states of underdoped cuprates are proposed

    Fundamental differences in the radio properties of red and blue quasars: insight from the LOFAR Two-metre Sky Survey (LoTSS)

    Get PDF
    Red quasi-stellar objects (QSOs) are a subset of the luminous end of the cosmic population of active galactic nuclei (AGN), most of which are reddened by intervening dust along the line-of-sight towards their central engines. In recent work from our team, we developed a systematic technique to select red QSOs from the Sloan Digital Sky Survey (SDSS), and demonstrated that they have distinctive radio properties using the Faint Images of the Radio Sky at Twenty centimeters (FIRST) radio survey. Here we expand our study using low-frequency radio data from the LOFAR Two-metre Sky Survey (LoTSS). With the improvement in depth that LoTSS offers, we confirm key results: compared to a control sample of normal “blue” QSOs matched in redshift and accretion power, red QSOs have a higher radio detection rate and a higher incidence of compact radio morphologies. For the first time, we also demonstrate that these differences arise primarily in sources of intermediate radio-loudness: radio-intermediate red QSOs are × 3 more common than typical QSOs, but the excess diminishes among the most radio-loud and the most radio-quiet systems in our study. We develop Monte-Carlo simulations to explore whether differences in star formation could explain these results, and conclude that, while star formation is an important source of low-frequency emission among radio-quiet QSOs, a population of AGN-driven compact radio sources are the most likely cause for the distinct low-frequency radio properties of red QSOs. Our study substantiates the conclusion that fundamental differences must exist between the red and normal blue QSO populations
    corecore