82 research outputs found

    Robust Classification for Imprecise Environments

    Get PDF
    In real-world environments it usually is difficult to specify target operating conditions precisely, for example, target misclassification costs. This uncertainty makes building robust classification systems problematic. We show that it is possible to build a hybrid classifier that will perform at least as well as the best available classifier for any target conditions. In some cases, the performance of the hybrid actually can surpass that of the best known classifier. This robust performance extends across a wide variety of comparison frameworks, including the optimization of metrics such as accuracy, expected cost, lift, precision, recall, and workforce utilization. The hybrid also is efficient to build, to store, and to update. The hybrid is based on a method for the comparison of classifier performance that is robust to imprecise class distributions and misclassification costs. The ROC convex hull (ROCCH) method combines techniques from ROC analysis, decision analysis and computational geometry, and adapts them to the particulars of analyzing learned classifiers. The method is efficient and incremental, minimizes the management of classifier performance data, and allows for clear visual comparisons and sensitivity analyses. Finally, we point to empirical evidence that a robust hybrid classifier indeed is needed for many real-world problems.Comment: 24 pages, 12 figures. To be published in Machine Learning Journal. For related papers, see http://www.hpl.hp.com/personal/Tom_Fawcett/ROCCH

    Feature Selection for MAUC-Oriented Classification Systems

    Full text link
    Feature selection is an important pre-processing step for many pattern classification tasks. Traditionally, feature selection methods are designed to obtain a feature subset that can lead to high classification accuracy. However, classification accuracy has recently been shown to be an inappropriate performance metric of classification systems in many cases. Instead, the Area Under the receiver operating characteristic Curve (AUC) and its multi-class extension, MAUC, have been proved to be better alternatives. Hence, the target of classification system design is gradually shifting from seeking a system with the maximum classification accuracy to obtaining a system with the maximum AUC/MAUC. Previous investigations have shown that traditional feature selection methods need to be modified to cope with this new objective. These methods most often are restricted to binary classification problems only. In this study, a filter feature selection method, namely MAUC Decomposition based Feature Selection (MDFS), is proposed for multi-class classification problems. To the best of our knowledge, MDFS is the first method specifically designed to select features for building classification systems with maximum MAUC. Extensive empirical results demonstrate the advantage of MDFS over several compared feature selection methods.Comment: A journal length pape

    Supervised Classification: Quite a Brief Overview

    Full text link
    The original problem of supervised classification considers the task of automatically assigning objects to their respective classes on the basis of numerical measurements derived from these objects. Classifiers are the tools that implement the actual functional mapping from these measurements---also called features or inputs---to the so-called class label---or output. The fields of pattern recognition and machine learning study ways of constructing such classifiers. The main idea behind supervised methods is that of learning from examples: given a number of example input-output relations, to what extent can the general mapping be learned that takes any new and unseen feature vector to its correct class? This chapter provides a basic introduction to the underlying ideas of how to come to a supervised classification problem. In addition, it provides an overview of some specific classification techniques, delves into the issues of object representation and classifier evaluation, and (very) briefly covers some variations on the basic supervised classification task that may also be of interest to the practitioner
    • …
    corecore