8 research outputs found

    A place-based approach to payments for ecosystem services

    Get PDF
    Payment for Ecosystem Services (PES) schemes are proliferating but are challenged by insufficient attention to spatial and temporal inter-dependencies, interactions between different ecosystems and their services, and the need for multi-level governance. To address these challenges, this paper develops a place-based approach to the development and implementation of PES schemes that incorporates multi-level governance, bundling or layering of services across multiple scales, and shared values for ecosystem services. The approach is evaluated and illustrated using case study research to develop an explicitly place-based PES scheme, the Peatland Code, owned and managed by the International Union for the Conservation of Nature’s UK Peatland Programme and designed to pay for restoration of peatland habitats. Buyers preferred bundled schemes with premium pricing of a primary service, contrasting with sellers’ preferences for quantifying and marketing services separately in a layered scheme. There was limited awareness among key business sectors of dependencies on ecosystem services, or the risks and opportunities arising from their management. Companies with financial links to peatlands or a strong environmental sustainability focus were interested in the scheme, particularly in relation to climate regulation, water quality, biodiversity and flood risk mitigation benefits. Visitors were most interested in donating to projects that benefited wildlife and were willing to donate around £2 on-site during a visit. Sellers agreed a deliberated fair price per tonne of CO2 equivalent from £11.18 to £15.65 across four sites in Scotland, with this range primarily driven by spatial variation in habitat degradation. In the Peak District, perceived declines in sheep and grouse productivity arising from ditch blocking led to substantially higher prices, but in other regions ditch blocking was viewed more positively. The Peatland Code was developed in close collaboration with stakeholders at catchment, landscape and national scales, enabling multi-level governance of the management and delivery of ecosystem services across these scales. Place-based PES schemes can mitigate negative trade-offs between ecosystem services, more effectively include cultural ecosystem services and engage with and empower diverse stakeholders in scheme design and governance

    Development of poly(glycerol adipate) nanoparticles loaded with non-steroidal anti-inflammatory drugs.

    No full text
    Item does not contain fulltextThe aim of this study was to assess acylated and non-acylated poly(glycerol adipate) polymers (PGA) as suitable nanoparticulate systems for encapsulation and release of ibuprofen, ibuprofen sodium salt (IBU-Na) and ketoprofen as model drugs. Drug encapsulated nanoparticles were prepared using the interfacial deposition method in the absence of surfactants. Physicochemical characterisation studies of the produced loaded nanoparticles showed that drug-polymer interactions depend on the characteristics of the actual active substance. IBU-Na showed strong interactions with the polymers and it was found to be molecularly dispersed within the polymer matrix while ibuprofen and ketoprofen retained their crystalline state. The drug release profiles showed stepwise patterns which involve an initial burst release effect, diffusion of the drug from the polymer matrix and eventually drug release possibly via a combined mechanism. PGA polymers can be effectively used as drug delivery carriers for various active substances

    Electrospray ionization tandem mass spectrometry in the characterization of isomeric benzofurocoumarins

    No full text
    A set of aminoalkoxy-substituted, differently annullated furocoumarins, differing in the position of the aminoalkoxy chain and in the unsaturation level of the fused ring, has been subjected to electron impact and electrospray ionisation (ESI) experiments. In order to achieve a distinct characterisation of isomeric compounds, which partially failed under electron impact conditions, collision-induced dissociation experiments were performed on protonated molecules. The breakdown curves obtained by varying the tickle voltage on an ion trap ESI instrument led to the desired characterisation

    Design and self-assembly of simple coat proteins for artificial viruses

    No full text
    Viruses are among the simplest biological systems and are highly effective vehicles for the delivery of genetic material into susceptible host cells1. Artificial viruses can be used as model systems for providing insights into natural viruses and can be considered a testing ground for developing artificial life. Moreover, they are used in biomedical and biotechnological applications, such as targeted delivery of nucleic acids for gene therapy1, 2 and as scaffolds in material science3, 4, 5. In a natural setting, survival of viruses requires that a significant fraction of the replicated genomes be completely protected by coat proteins. Complete protection of the genome is ensured by a highly cooperative supramolecular process between the coat proteins and the nucleic acids, which is based on reversible, weak and allosteric interactions only6, 7, 8, 9. However, incorporating this type of supramolecular cooperativity into artificial viruses remains challenging10, 11, 12, 13, 14, 15. Here, we report a rational design for a self-assembling minimal viral coat protein based on simple polypeptide domains. Our coat protein features precise control over the cooperativity of its self-assembly with single DNA molecules to finally form rod-shaped virus-like particles. We confirm the validity of our design principles by showing that the kinetics of self-assembly of our virus-like particles follows a previous model developed for tobacco mosaic virus9. We show that our virus-like particles protect DNA against enzymatic degradation and transfect cells with considerable efficiency, making them promising delivery vehicles
    corecore