836 research outputs found

    Determining Optimum Ship Routes

    Get PDF
    The article of record as published may be found at https://doi.org/10.1287/ opre.10.6.799A method is given for determining optimum ship routes on a digital computer. A ship is assumed to be in a fallout field whose intensity is a known function f(x, y, t) of position and time. A typical problem is that of choosing a route to a point where f ≦ fm, the maximum intensity that can be tolerated indefinitely. The route is to be such as to minimize the dose z = ∫0Tfdt, the termininal time and point are not specified. The problem of sending the ship to a given point with z minimized is also discussed. These are equivalent to corresponding problems of choosing a route to minimize the probability of detection while going through a region where the probability of detection is a known function of position and time.Office Naval Researc

    How phyllosilicate mineral structure affects fault strength in Mg-rich fault systems

    Get PDF
    The clay mineralogy of fault gouges has important implications for the frictional properties of faults, often identified as a major factor contributing to profound fault weakness. This work compares the frictional strength of a group of Mg‐rich minerals common in the Mg‐Al‐Si‐O compositional space (talc, saponite, sepiolite, and palygorskite) by conducting triaxial frictional tests with water or argon as pore fluid. The studied minerals are chemically similar but differ in their crystallographic structure. Results show that fibrous Mg‐rich phyllosilicates are stronger than their planar equivalents. Frictional strength in this group of minerals is highly influenced by strength of the atomic bonds, continuity of water layers within the crystals, and interactions of mineral surfaces with water molecules, all of which are dictated by crystal structure. The formation and stability of the minerals studied are mainly controlled by small changes in pore fluid chemistry, which can lead to significant differences in fault strength

    Theory of disk accretion onto supermassive black holes

    Full text link
    Accretion onto supermassive black holes produces both the dramatic phenomena associated with active galactic nuclei and the underwhelming displays seen in the Galactic Center and most other nearby galaxies. I review selected aspects of the current theoretical understanding of black hole accretion, emphasizing the role of magnetohydrodynamic turbulence and gravitational instabilities in driving the actual accretion and the importance of the efficacy of cooling in determining the structure and observational appearance of the accretion flow. Ongoing investigations into the dynamics of the plunging region, the origin of variability in the accretion process, and the evolution of warped, twisted, or eccentric disks are summarized.Comment: Mostly introductory review, to appear in "Supermassive black holes in the distant Universe", ed. A.J. Barger, Kluwer Academic Publishers, in pres

    Establishing the baseline level of repetitive element expression in the human cortex

    Get PDF
    Background: Although nearly half of the human genome is comprised of repetitive sequences, the expression profile of these elements remains largely uncharacterized. Recently developed high throughput sequencing technologies provide us with a powerful new set of tools to study repeat elements. Hence, we performed whole transcriptome sequencing to investigate the expression of repetitive elements in human frontal cortex using postmortem tissue obtained from the Stanley Medical Research Institute. Results: We found a significant amount of reads from the human frontal cortex originate from repeat elements. We also noticed that Alu elements were expressed at levels higher than expected by random or background transcription. In contrast, L1 elements were expressed at lower than expected amounts. Conclusions: Repetitive elements are expressed abundantly in the human brain. This expression pattern appears to be element specific and can not be explained by random or background transcription. These results demonstrate that our knowledge about repetitive elements is far from complete. Further characterization is required to determine the mechanism, the control, and the effects of repeat element expression

    The vertebrate muscle Z-disc: sarcomere anchor for structure and signalling

    Get PDF
    The Z-disc, appearing as a fine dense line forming sarcomere boundaries in striated muscles, when studied in detail reveals crosslinked filament arrays that transmit tension and house myriads of proteins with diverse functions. At the Z-disc the barbed ends of the antiparallel actin filaments from adjoining sarcomeres interdigitate and are crosslinked primarily by layers of α-actinin. The Z-disc is therefore the site of polarity reversal of the actin filaments, as needed to interact with the bipolar myosin filaments in successive sarcomeres. The layers of α-actinin determine the Z-disc width: fast fibres have narrow (~30–50 nm) Z-discs and slow and cardiac fibres have wide (~100 nm) Z-discs. Comprehensive reviews on the roles of the numerous proteins located at the Z-disc in signalling and disease have been published; the aim here is different, namely to review the advances in structural aspects of the Z-disc

    A radio-pulsing white dwarf binary star

    Get PDF
    White dwarfs are compact stars, similar in size to Earth but ~200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions, and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf / cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a delta-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56 hr period close binary, pulsing in brightness on a period of 1.97 min. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 s, and they are detectable at radio frequencies, the first such detection for any white dwarf system. They reflect the spin of a magnetic white dwarf which we find to be slowing down on a 10^7 yr timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf's spin, they originate in large part from the cool star. AR Sco's broad-band spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf's magnetosphere

    Environmental and socio-demographic associates of children's active transport to school: a cross-sectional investigation from the URBAN Study

    Get PDF
    BACKGROUND: Active transport (e.g., walking, cycling) to school (ATS) can contribute to children's physical activity and health. The built environment is acknowledged as an important factor in understanding children's ATS, alongside parental factors and seasonality. Inconsistencies in methodological approaches exist, and a clear understanding of factors related to ATS remains equivocal. The purpose of this study was to gain a better understanding of associates of children's ATS, by considering the effects of daily weather patterns and neighbourhood walk ability and neighbourhood preferences (i.e., for living in a high or low walkable neighbourhood) on this behaviour. METHODS: Data were drawn from the Understanding Relationships between Activity and Neighbourhoods study, a cross-sectional study of physical activity and the built environment in adults and children in four New Zealand cities. Parents of participating children completed an interview and daily trip diary that assessed their child's mode of travel to school, household and individual demographic information, and parental neighbourhood preference. Daily weather data were downloaded from New Zealand's national climate database. Geographic information systems-derived variables were calculated for distance to school and neighbourhood walkability. Bivariate analyses were conducted with ATS and potential associates; factors related to ATS at p less than 0.20 were considered simultaneously in generalized estimation equation models, and backwards elimination of non-significant factors was conducted; city was treated as a fixed effect in all models. RESULTS: A total of 217 children aged 6.5-15 years participated in this study. Female sex, age, city, household income, limited/no car access, residing in zone of school, shorter distance to school, neighbourhood self selection, rainfall, and sunlight hours were simultaneously considered in multivariate generalised estimation equation modelling (all p less than 0.20 in bivariate analyses). After elimination of non-significant factors, age (p = 0.005), shorter distance to school (p less than 0.001), city (p = 0.03), and neighbourhood self selection (p = 0.04) remained significantly associated with ATS in the multivariate analysis. CONCLUSION: Distance to school is the prevailing environmental influencing factor on children's ATS. This study, in conjunction with previous research, suggests that school siting is likely an important associate of children's ATS

    True versus False Parasite Interactions: A Robust Method to Take Risk Factors into Account and Its Application to Feline Viruses

    Get PDF
    International audienceBACKGROUND: Multiple infections are common in natural host populations and interspecific parasite interactions are therefore likely within a host individual. As they may seriously impact the circulation of certain parasites and the emergence and management of infectious diseases, their study is essential. In the field, detecting parasite interactions is rendered difficult by the fact that a large number of co-infected individuals may also be observed when two parasites share common risk factors. To correct for these "false interactions", methods accounting for parasite risk factors must be used. METHODOLOGY/PRINCIPAL FINDINGS: In the present paper we propose such a method for presence-absence data (i.e., serology). Our method enables the calculation of the expected frequencies of single and double infected individuals under the independence hypothesis, before comparing them to the observed ones using the chi-square statistic. The method is termed "the corrected chi-square." Its robustness was compared to a pre-existing method based on logistic regression and the corrected chi-square proved to be much more robust for small sample sizes. Since the logistic regression approach is easier to implement, we propose as a rule of thumb to use the latter when the ratio between the sample size and the number of parameters is above ten. Applied to serological data for four viruses infecting cats, the approach revealed pairwise interactions between the Feline Herpesvirus, Parvovirus and Calicivirus, whereas the infection by FIV, the feline equivalent of HIV, did not modify the risk of infection by any of these viruses. CONCLUSIONS/SIGNIFICANCE: This work therefore points out possible interactions that can be further investigated in experimental conditions and, by providing a user-friendly R program and a tutorial example, offers new opportunities for animal and human epidemiologists to detect interactions of interest in the field, a crucial step in the challenge of multiple infections
    corecore