75 research outputs found

    The O2 A-band in fluxes and polarization of starlight reflected by Earth-like exoplanets

    Full text link
    Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmosphere and surface can be derived by analyzing light of the parent star reflected by the planet. We investigate the influence of the surface albedo AsA_{\rm s}, the optical thickness bcloudb_{\rm cloud} and altitude of water clouds, and the mixing ratio η\eta of biosignature O2_2 on the strength of the O2_2 A-band (around 760 nm) in flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios (η\eta < 0.4) will yield moderately deep bands in flux and moderate to small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on their properties such as optical thickness, top altitude, particle phase, coverage fraction, horizontal distribution. Depending on the surface albedo, and cloud properties, different O2_2 mixing ratios η\eta can give similar absorption band depths in flux and band strengths in polarization, in particular if the clouds have moderate to high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, in particular not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O2_2 or any other absorbing gas.Comment: 21 pages, 20 figures, accepted for publication in Ap

    Utilisation de la grille pour la simulation de température de brillance dans une atmosphère nuageuse composée de cirrus

    Get PDF
    Utilisation de la grille pour la simulation de température de brillance dans une atmosphère nuageuse composée de cirru

    The Prospect of Detecting Volcanic Signatures on an ExoEarth Using Direct Imaging

    Full text link
    The James Webb Space Telescope (JWST) has provided the first opportunity to study the atmospheres of terrestrial exoplanets and estimate their surface conditions. Earth-sized planets around Sun-like stars are currently inaccessible with JWST however, and will have to be observed using the next generation of telescopes with direct imaging capabilities. Detecting active volcanism on an Earth-like planet would be particularly valuable as it would provide insight into its interior, and provide context for the commonality of the interior states of Earth and Venus. In this work we used a climate model to simulate four exoEarths over eight years with ongoing large igneous province eruptions with outputs ranging from 1.8-60 Gt of sulfur dioxide. The atmospheric data from the simulations were used to model direct imaging observations between 0.2-2.0 μ\mum, producing reflectance spectra for every month of each exoEarth simulation. We calculated the amount of observation time required to detect each of the major absorption features in the spectra, and identified the most prominent effects that volcanism had on the reflectance spectra. These effects include changes in the size of the O3_3, O2_2, and H2_2O absorption features, and changes in the slope of the spectrum. Of these changes, we conclude that the most detectable and least ambiguous evidence of volcanism are changes in both O3_3 absorption and the slope of the spectrum.Comment: 13 pages, 5 figures, 4 tables, Accepted for publication in AJ (September 26, 2023

    Sensitive Probing of Exoplanetary Oxygen via Mid Infrared Collisional Absorption

    Full text link
    The collision-induced fundamental vibration-rotation band at 6.4 um is the most significant absorption feature from O2 in the infrared (Timofeyev and Tonkov, 1978; Rinslandet al., 1982, 1989), yet it has not been previously incorporated into exoplanet spectral analyses for several reasons. Either CIAs were not included or incomplete/obsolete CIA databases were used. Also, the current version of HITRAN does not include CIAs at 6.4 um with other collision partners (O2-X). We include O2-X CIA features in our transmission spectroscopy simulations by parameterizing the 6.4 um O2-N2 CIA based on Rinsland et al.(1989) and the O2-CO2 CIA based on Baranov et al. (2004). Here we report that the O2-X CIA may be the most detectable O2 feature for transit observations. For a potentialTRAPPIST-1e analogue system within 5 pc of the Sun, it could be the only O2 detectable signature with JWST (using MIRI LRS) for a modern Earth-like cloudy atmosphere with biological quantities of O2. Also, we show that the 6.4 um O2-X CIA would be prominent for O2-rich desiccated atmospheres (Luger and Barnes, 2015) and could be detectable with JWST in just a few transits. For systems beyond 5 pc, this feature could therefore be a powerful discriminator of uninhabited planets with non-biological "false positive" O2 in their atmospheres - as they would only be detectable at those higher O2 pressures.Comment: Published in Nature Astronom

    Evaluating the Plausible Range of N2O Biosignatures on Exo-Earths: An Integrated Biogeochemical, Photochemical, and Spectral Modeling Approach

    Full text link
    Nitrous oxide (N2O) -- a product of microbial nitrogen metabolism -- is a compelling exoplanet biosignature gas with distinctive spectral features in the near- and mid-infrared, and only minor abiotic sources on Earth. Previous investigations of N2O as a biosignature have examined scenarios using Earthlike N2O mixing ratios or surface fluxes, or those inferred from Earth's geologic record. However, biological fluxes of N2O could be substantially higher, due to a lack of metal catalysts or if the last step of the denitrification metabolism that yields N2 from N2O had never evolved. Here, we use a global biogeochemical model coupled with photochemical and spectral models to systematically quantify the limits of plausible N2O abundances and spectral detectability for Earth analogs orbiting main-sequence (FGKM) stars. We examine N2O buildup over a range of oxygen conditions (1%-100% present atmospheric level) and N2O fluxes (0.01-100 teramole per year; Tmol = 10^12 mole) that are compatible with Earth's history. We find that N2O fluxes of 10 [100] Tmol yr−1^{-1} would lead to maximum N2O abundances of ~5 [50] ppm for Earth-Sun analogs, 90 [1600] ppm for Earths around late K dwarfs, and 30 [300] ppm for an Earthlike TRAPPIST-1e. We simulate emission and transmission spectra for intermediate and maximum N2O concentrations that are relevant to current and future space-based telescopes. We calculate the detectability of N2O spectral features for high-flux scenarios for TRAPPIST-1e with JWST. We review potential false positives, including chemodenitrification and abiotic production via stellar activity, and identify key spectral and contextual discriminants to confirm or refute the biogenicity of the observed N2O.Comment: 22 pages, 17 figures; ApJ, 937, 10

    Water Condensation Zones around Main Sequence Stars

    Full text link
    Understanding the set of conditions that allow rocky planets to have liquid water on their surface -- in the form of lakes, seas or oceans -- is a major scientific step to determine the fraction of planets potentially suitable for the emergence and development of life as we know it on Earth. This effort is also necessary to define and refine the so-called "Habitable Zone" (HZ) in order to guide the search for exoplanets likely to harbor remotely detectable life forms. Until now, most numerical climate studies on this topic have focused on the conditions necessary to maintain oceans, but not to form them in the first place. Here we use the three-dimensional Generic Planetary Climate Model (PCM), historically known as the LMD Generic Global Climate Model (GCM), to simulate water-dominated planetary atmospheres around different types of Main-Sequence stars. The simulations are designed to reproduce the conditions of early ocean formation on rocky planets due to the condensation of the primordial water reservoir at the end of the magma ocean phase. We show that the incoming stellar radiation (ISR) required to form oceans by condensation is always drastically lower than that required to vaporize oceans. We introduce a Water Condensation Limit, which lies at significantly lower ISR than the inner edge of the HZ calculated with three-dimensional numerical climate simulations. This difference is due to a behavior change of water clouds, from low-altitude dayside convective clouds to high-altitude nightside stratospheric clouds. Finally, we calculated transit spectra, emission spectra and thermal phase curves of TRAPPIST-1b, c and d with H2O-rich atmospheres, and compared them to CO2 atmospheres and bare rock simulations. We show using these observables that JWST has the capability to probe steam atmospheres on low-mass planets, and could possibly test the existence of nightside water clouds.Comment: Accepted for publication in Astronomy & Astrophysic
    • …
    corecore