8 research outputs found

    Neocentric X-chromosome in a girl with Turner-like syndrome

    Full text link
    Abstract Background Neocentromeres are rare human chromosomal aberrations in which a new centromere has formed in a previously non-centromeric location. We report the finding of a structurally abnormal X chromosome with a neocentromere in a 15-year-old girl with clinical features suggestive of Turner syndrome, including short stature and primary amenorrhea. Result G-banded chromosome analysis revealed a mosaic female karyotype involving two abnormal cell lines. One cell line (84% of analyzed metaphases) had a structurally abnormal X chromosome (duplication of the long arm and deletion of the short arm) and a normal X chromosome. The other cell line (16% of cells) exhibited monosomy X. C-banding studies were negative for the abnormal X chromosome. FISH analysis revealed lack of hybridization of the abnormal X chromosome with both the X centromere-specific probe and the “all human centromeres” probe, a pattern consistent with lack of the X chromosome endogenous centromere. A FISH study using an XIST gene probe revealed the presence of two XIST genes, one on each long arm of the iso(Xq), required for inactivation of the abnormal X chromosome. R-banding also demonstrated inactivation of the abnormal X chromosome. An assay for centromeric protein C (CENP-C) was positive on both the normal and the abnormal X chromosomes. The position of CENP-C in the abnormal X chromosome defined a neocentromere, which explains its mitotic stability. The karyotype is thus designated as 46,X,neo(X)(qter- > q12::q12- > q21.2- > neo- > q21.2- > qter)[42]/45,X[8], which is consistent with stigmata of Turner syndrome. The mother of this patient has a normal karyotype; however, the father was not available for study. Conclusion To our knowledge, this is the first case of mosaic Turner syndrome involving an analphoid iso(Xq) chromosome with a proven neocentromere among 90 previously described cases with a proven neocentromere.</p

    Spectral Karyotyping for identification of constitutional chromosomal abnormalities at a national reference laboratory

    Get PDF
    Spectral karyotyping is a diagnostic tool that allows visualization of chromosomes in different colors using the FISH technology and a spectral imaging system. To assess the value of spectral karyotyping analysis for identifying constitutional supernumerary marker chromosomes or derivative chromosomes at a national reference laboratory, we reviewed the results of 179 consecutive clinical samples (31 prenatal and 148 postnatal) submitted for spectral karyotyping. Over 90% of the cases were requested to identify either small supernumerary marker chromosomes (sSMCs) or chromosomal exchange material detected by G-banded chromosome analysis. We also reviewed clinical indications of those cases with marker chromosomes in which chromosomal origin was identified by spectral karyotyping. Our results showed that spectral karyotyping identified the chromosomal origin of marker chromosomes or the source of derivative chromosomal material in 158 (88%) of the 179 clinical cases; the identification rate was slightly higher for postnatal (89%) compared to prenatal (84%) cases. Cases in which the origin could not be identified had either a small marker chromosome present at a very low level of mosaicism (< 10%), or contained very little euchromatic material. Supplemental FISH analysis confirmed the spectral karyotyping results in all 158 cases. Clinical indications for prenatal cases were mainly for marker identification after amniocentesis. For postnatal cases, the primary indications were developmental delay and multiple congenital anomalies (MCA). The most frequently encountered markers were of chromosome 15 origin for satellited chromosomes, and chromosomes 2 and 16 for non-satellited chromosomes. We were able to obtain pertinent clinical information for 47% (41/88) of cases with an identified abnormal chromosome. We conclude that spectral karyotyping is sufficiently reliable for use and provides a valuable diagnostic tool for establishing the origin of supernumerary marker chromosomes or derivative chromosomal material that cannot be identified with standard cytogenetic techniques

    Regions of homozygosity identified by oligonucleotide SNP arrays: evaluating the incidence and clinical utility

    No full text
    Copy neutral segments with allelic homozygosity, also known as regions of homozygosity (ROHs), are frequently identified in cases interrogated by oligonucleotide single-nucleotide polymorphism (oligo-SNP) microarrays. Presence of ROHs may be because of parental relatedness, chromosomal recombination or rearrangements and provides important clues regarding ancestral homozygosity, consanguinity or uniparental disomy. In this study of 14 574 consecutive cases, 832 (6%) were found to harbor one or more ROHs over 10 Mb, of which 651 cases (78%) had multiple ROHs, likely because of identity by descent (IBD), and 181 cases (22%) with ROHs involving a single chromosome. Parental relatedness was predicted to be first degree or closer in 5%, second in 9% and third in 19%. Of the 181 cases, 19 had ROHs for a whole chromosome revealing uniparental isodisomy (isoUPD). In all, 25 cases had significant ROHs involving a single chromosome; 5 cases were molecularly confirmed to have a mixed iso- and heteroUPD15 and 1 case each with segmental UPD9pat and segmental UPD22mat; 17 cases were suspected to have a mixed iso- and heteroUPD including 2 cases with small supernumerary marker and 2 cases with mosaic trisomy. For chromosome 15, 12 (92%) of 13 molecularly studied cases had either Prader–Willi or Angelman syndrome. Autosomal recessive disorders were confirmed in seven of nine cases from eight families because of the finding of suspected gene within a ROH. This study demonstrates that ROHs are much more frequent than previously recognized and often reflect parental relatedness, ascertain autosomal recessive diseases or unravel UPD in many cases
    corecore