6 research outputs found

    Increase of the Density, Temperature and Velocity of Plasma Jets driven by a Ring of High Energy Laser Beams

    Full text link
    Supersonic plasma outflows driven by multi-beam, high-energy lasers, such as Omega and NIF, have been and will be used as platforms for a variety of laboratory astrophysics experiments. Here we propose a new way of launching high density and high velocity, plasma jets using multiple intense laser beams in a hollow ring formation. We show that such jets provide a more flexible and versatile platform for future laboratory astrophysics experiments. Using high resolution hydrodynamic simulations, we demonstrate that the collimated jets can achieve much higher density, temperature and velocity when multiple laser beams are focused to form a hollow ring pattern at the target, instead of focused onto a single spot. We carried out simulations with different ring radii and studied their effects on the jet properties. Implications for laboratory collisionless shock experiments are discussed.Comment: 5 pages, 4 figures, Accepted to HED

    Feasibility and Performance of the Staged Z-Pinch: A One-dimensional Study with FLASH and MACH2

    Full text link
    Z-pinch platforms constitute a promising pathway to fusion energy research. Here, we present a one-dimensional numerical study of the staged Z-pinch (SZP) concept using the FLASH and MACH2 codes. We discuss the verification of the codes using two analytical benchmarks that include Z-pinch-relevant physics, building confidence on the codes' ability to model such experiments. Then, FLASH is used to simulate two different SZP configurations: a xenon gas-puff liner (SZP1*) and a silver solid liner (SZP2). The SZP2 results are compared against previously published MACH2 results, and a new code-to-code comparison on SZP1* is presented. Using an ideal equation of state and analytical transport coefficients, FLASH yields a fuel convergence ratio (CR) of approximately 39 and a mass-averaged fuel ion temperature slightly below 1 keV for the SZP2 scheme, significantly lower than the full-physics MACH2 prediction. For the new SZP1* configuration, full-physics FLASH simulations furnish large and inherently unstable CRs (> 300), but achieve fuel ion temperatures of many keV. While MACH2 also predicts high temperatures, the fuel stagnates at a smaller CR. The integrated code-to-code comparison reveals how magnetic insulation, heat conduction, and radiation transport affect platform performance and the feasibility of the SZP concept
    corecore