11 research outputs found

    Role of the 820 A/G variant in the IGF-2 gene and recurrent spontaneous abortion in southern Iran: A cross-sectional study

    Get PDF
    Background: Insulin-like growth factor-2 (IGF-2) is a polypeptide growth factor and one of the first genes expressed prior to the implantation of the embryo, with its highest expression in the placental cells. Its activity strongly depends on the genomic imprinting, and the result of the loss of genetic imprinting is the termination of the early stages of embryonic development, which can lead to recurrent spontaneous abortion. Objective: This cross-sectional study aimed to investigate the role of 820A/G variant of the IGF-2 gene and the probability to recurrent spontaneous abortion (RSA) in southern Iran. Materials and Methods: In this study, 50 aborted fetuses tissue for the study group and blood samples umbilical-cord from newborns as control group (n = 50) were collected from Shiraz-Iran (2017). The genotyping of the target point in the IGF-2 gene was performed by Real-time Polymerase Chain Reaction and analyzed through highresolution melting (HRM) curve. Results: Based on the collected data (AA genotype = reference), allele “A” frequency in aborted fetus was 51% and control 68% as well as allele G 49% and 32%, respectively. Moreover, 27 aborted embryos (54%) were heterozygous (A/G) (OR = 3.274, 95% CI = 1.015-10.561, p = 0.04), while 18 cases (36%) in control sample showed heterozygosity. Considering the phenotypic status, the G allele had a dominant effect on the incidence of RSA (p = 0.008, OR = 3.167). Conclusion: Based on the present study, the risk of abortion due to loss of heterozygosity or quantitative decline of the IGF-2 is about three-fold in the southern Iran. Key words: Variant, IGF-2, Spontaneous abortion, Genomic imprinting, Gene expression

    Detection of Aflatoxin and Ochratoxin A in Spices by High-Performance Liquid Chromatography

    No full text
    Background. Spices are one of the flavoring components of food in the cooking recipes of different nations that are used daily. However, these ingredients may be contaminated by toxicogenic fungi and subsequent production of mycotoxins that cannot be neutralized through cooking. In the present study, the possible contamination of spices by aflatoxins (AFs) and ochratoxin A (OTA) was investigated from Shiraz, the south part of Iran. Materials and Methods. A total of 80 spice samples including turmeric (n = 20), red pepper (n = 20), black pepper (n = 20), and cinnamon (n = 20) were purchased from markets and cultured on appropriate medium. The isolated fungi were identified. Simultaneously, mycotoxins from spices were extracted with immunoaffinity columns (IAC) and the occurrence of AFs (B1 + B2 + G1 + G2) and OTA was then determined using high-performance liquid chromatography (HPLC) with a fluorescence detector (FD). Result. The results depicted that 40 spice samples were contaminated with AFs and 48 samples with OTA. The highest rate of AFs contamination was related to red pepper, in 80% of which the amount of contamination was excessive than the standard level (>10 μg/kg). All black pepper samples were determined to be contaminated with OTA at over legislation limits of >15 μg/kg. Aspergillus species were the predominant isolated fungi, followed by Penicillium, and Mucor species. Discussion. Regarding the high mycotoxins contamination in spices in the current study, regular effective surveillance and quality control procedures are highly recommended. To achieve this goal, it is necessary to empower food-related laboratories with precise methods of isolation and detection of mycotoxins

    Surface engineered metal-organic frameworks as active targeting nanomedicines for mono- and multi-therapy

    Get PDF
    The precision tenability of metal-organic frameworks (MOFs) enables the efficient encapsulation of a wide variety of small-molecule pharmaceuticals and macromolecular cargos, such as nucleic acids and proteins. MOFs, assembling of organic ligands and metal ions/metal clusters via coordinative bonds, offer advanced features in medicine and drug delivery due to their ultrahigh porosity, diverse functional groups, and versatile structures. After surface modification with active targeting moieties, MOFs can specifically transfer a high amount of payload to the site of action due to the high internal surface area. This review summarizes the unique properties of MOFs and their advantages as nanocarriers for drug targeting to treat different diseases. At first, we reviewed the structures of MOFs, and the corresponding synthesis approaches and characterization techniques. Then, the state-of-the-art strategies to functionalize MOFs with targeting moieties are discussed. Regarding the most recent active targeting delivery applications of MOFs, critical issues to fabricate an efficient carrier that can bind to overexpressed cell-surface receptors are discussed. Moreover, MOF-based nanocarriers are categorized based on the ligands (i.e., proteins, peptides, aptamers, small molecules, and polysaccharides) used to deliver therapeutic agents through active targeting. Finally, challenges and prospects are highlighted to provide context for future usage of MOFs as efficient drug delivery systems

    Surface Decoration of Peptide Nanoparticles Enables Efficient Therapy toward Osteoporosis and Diabetes

    Get PDF
    A versatile surface decoration strategy to efficiently encapsulate water-soluble peptides is developed. By assembling peptide molecules into nanoparticles, diverse physiochemical properties of these compacted molecules are equalized to the surface properties of nanoparticles. Primarily driven by the generic electrostatic attractions, the surface of as-prepared peptide nanoparticles is decorated with charged amino acids-grafted poly(lactic-co-glycolic acid). This adsorbed polymer layer versatilely blocks the phase transfer of peptide nanoparticles by increasing their affinity to the dispersed phase solvent molecules. Attributed to the ultrahigh encapsulation efficiencies (> 96%), the peptide mass fraction inside the obtained microcomposites is higher than 48%. The plasma calcium level has been efficiently reduced for ≈3 weeks with only one single injection of salmon calcitonin-encapsulated microcomposite in osteoporotic rats. Similarly, one single injection of exenatide-encapsulated microcomposites efficiently controls the glycemic level in type 2 diabetic rats for up to 3 weeks. Overall, the developed versatile surface decoration strategy efficiently encapsulates peptides and improves their pharmacokinetic features, regardless of the molecular structure of peptide cargos

    Nanolipodendrosome-loaded glatiramer acetate and myogenic differentiation I as augmentation therapeutic strategy approaches in muscular dystrophy

    No full text
    Backgrond: Muscular dystrophies consist of a number of juvenile and adult forms of complex disorders which generally cause weakness or efficiency defects affecting skeletal muscles or, in some kinds, other types of tissues in all parts of the body are vastly affected. In previous studies, it was observed that along with muscular dystrophy, immune inflammation was caused by inflammatory cells invasion - like T lymphocyte markers (CD8+/CD4+). Inflammatory processes play a major part in muscular fibrosis in muscular dystrophy patients. Additionally, a significant decrease in amounts of two myogenic recovery factors (myogenic differentation 1 MyoD] and myogenin) in animal models was observed. The drug glatiramer acetate causes anti-inflammatory cytokines to increase and T helper (Th) cells to induce, in an as yet unknown mechanism. MyoD recovery activity in muscular cells justifies using it alongside this drug. Methods: In this study, a nanolipodendrosome carrier as a drug delivery system was designed. The purpose of the system was to maximize the delivery and efficiency of the two drug factors, MyoD and myogenin, and introduce them as novel therapeutic agents in muscular dystrophy phenotypic mice. The generation of new muscular cells was analyzed in SW1 mice. Then, immune system changes and probable side effects after injecting the nanodrug formulations were investigated. Results: The loaded lipodendrimer nanocarrier with the candidate drug, in comparison with the nandrolone control drug, caused a significant increase in muscular mass, a reduction in CD4+/CD8+ inflammation markers, and no significant toxicity was observed. The results support the hypothesis that the nanolipodendrimer containing the two candidate drugs will probably be an efficient means to ameliorate muscular degeneration, and warrants further investigation
    corecore