107 research outputs found
Expectations Formation and Forecasting of Vehicle Demand: An Empirical Study of the Vehicle Quota Auctions in Singapore
Published in Transportation Research Part A: Policy and Practice, 2004, https://doi.org/10.1016/j.tra.2003.12.002</p
Prevalence and significance of Exit Block During Arrhythmias Arising in Pulmonary Veins
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74819/1/j.1540-8167.2000.tb00332.x.pd
MTMR4 SNVs modulate ion channel degradation and clinical severity in congenital long QT syndrome: insights in the mechanism of action of protective modifier genes
Abstract
Aims
In long QT syndrome (LQTS) patients, modifier genes modulate the arrhythmic risk associated with a disease-causing mutation. Their recognition can improve risk stratification and clinical management, but their discovery represents a challenge. We tested whether a cellular-driven approach could help to identify new modifier genes and especially their mechanism of action.
Methods and results
We generated human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) from two patients carrying the same KCNQ1-Y111C mutation, but presenting opposite clinical phenotypes. We showed that the phenotype of the iPSC-CMs derived from the symptomatic patient is due to impaired trafficking and increased degradation of the mutant KCNQ1 and wild-type human ether-a-go-go-related gene. In the iPSC-CMs of the asymptomatic (AS) patient, the activity of an E3 ubiquitin-protein ligase (Nedd4L) involved in channel protein degradation was reduced and resulted in a decreased arrhythmogenic substrate. Two single-nucleotide variants (SNVs) on the Myotubularin-related protein 4 (MTMR4) gene, an interactor of Nedd4L, were identified by whole-exome sequencing as potential contributors to decreased Nedd4L activity. Correction of these SNVs by CRISPR/Cas9 unmasked the LQTS phenotype in AS cells. Importantly, the same MTMR4 variants were present in 77% of AS Y111C mutation carriers of a separate cohort. Thus, genetically mediated interference with Nedd4L activation seems associated with protective effects.
Conclusion
Our finding represents the first demonstration of the cellular mechanism of action of a protective modifier gene in LQTS. It provides new clues for advanced risk stratification and paves the way for the design of new therapies targeting this specific molecular pathway
Fumarylacetoacetate Hydrolase Knock-out Rabbit Model for Hereditary Tyrosinemia Type 1.
Hereditary tyrosinemia type 1 (HT1) is a severe human autosomal recessive disorder caused by the deficiency of fumarylacetoacetate hydroxylase (FAH), an enzyme catalyzing the last step in the tyrosine degradation pathway. Lack of FAH causes accumulation of toxic metabolites (fumarylacetoacetate and succinylacetone) in blood and tissues, ultimately resulting in severe liver and kidney damage with onset that ranges from infancy to adolescence. This tissue damage is lethal but can be controlled by administration of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC), which inhibits tyrosine catabolism upstream of the generation of fumarylacetoacetate and succinylacetone. Notably, in animals lacking FAH, transient withdrawal of NTBC can be used to induce liver damage and a concomitant regenerative response that stimulates the growth of healthy hepatocytes. Among other things, this model has raised tremendous interest for the in vivo expansion of human primary hepatocytes inside these animals and for exploring experimental gene therapy and cell-based therapies. Here, we report the generation of FAH knock-out rabbits via pronuclear stage embryo microinjection of transcription activator-like effector nucleases. FAH-/- rabbits exhibit phenotypic features of HT1 including liver and kidney abnormalities but additionally develop frequent ocular manifestations likely caused by local accumulation of tyrosine upon NTBC administration. We also show that allogeneic transplantation of wild-type rabbit primary hepatocytes into FAH-/- rabbits enables highly efficient liver repopulation and prevents liver insufficiency and death. Because of significant advantages over rodents and their ease of breeding, maintenance, and manipulation compared with larger animals including pigs, FAH-/- rabbits are an attractive alternative for modeling the consequences of HT1.Wellcome Trus
Device-detected subclinical atrial tachyarrhythmias: Definition, implications and management - An European Heart Rhythm Association (EHRA) consensus document, endorsed by Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS) and Sociedad Latinoamericana de Estimulaci\uf3n Card\uedaca y Electrofisiolog\ueda (SOLEACE)
Among atrial tachyarrhythmias (AT), atrial fibrillation (AF) is the most common sustained arrhythmia. Many patients with AT have no symptoms during brief or even extended periods of the arrhythmia, making detection in patients at risk for stroke challenging. Subclinical atrial tachyarrhythmia and asymptomatic or silent atrial tachyarrhythmia often precede the development of clinical AF. Clinical AF and subclinical atrial fibrillation (SCAF) are associated with an increased risk of thromboembolism. Indeed, in many cases, SCAF is discovered only after complications such as ischaemic stroke or congestive heart failure have occurred
Adverse Events and Clinical Correlates in Asian Patients with Atrial Fibrillation and Diabetes Mellitus: A Report from Asia Pacific Heart Rhythm Society Atrial Fibrillation Registry
Aims. To evaluate the adverse events (and its clinical correlates) in a large prospective cohort of Asian patients with atrial fibrillation (AF) and diabetes mellitus (DM). Material and Methods. We recruited patients with atrial fibrillation (AF) from the Asia-Pacific Heart Rhythm Society (APHRS) AF Registry and included those for whom the diabetic mellitus (DM) status was known. We used Cox-regression analysis to assess the 1-year risk of all-cause death, thromboembolic events, acute coronary syndrome, heart failure and major bleeding. Results. Of 4058 patients (mean age 68.5 ± 11.8 years; 34.4% females) considered for this analysis, 999 (24.6%) had DM (age 71 ± 11 years, 36.4% females). Patients with DM had higher mean CHA2DS2-VASc (2.3 ± 1.6 vs. 4.0 ± 1.5, p < 0.001) and HAS-BLED (1.3 ± 1.0 vs. 1.7 ± 1.1, p < 0.001) risk scores and were less treated with rhythm control strategies compared to patients without DM (18.7% vs. 22.0%). After 1-year of follow-up, patients with DM had higher incidence of all-cause death (4.9% vs. 2.3%, p < 0.001), cardiovascular death (1.3% vs. 0.4%, p = 0.003), and major bleeding (1.8% vs. 0.9%, p = 0.002) compared to those without DM. On Cox regression analysis, adjusted for age, sex, heart failure, coronary and peripheral artery diseases and previous thromboembolic event, DM was independently associated with a higher risk of all-cause death (HR 1.48, 95% CI 1.00–2.19), cardiovascular death (HR 2.33, 95% CI 1.01–5.40), and major bleeding (HR 1.91, 95% 1.01–3.60). On interaction analysis, the impact of DM in determining the risk of all-cause death was greater in young than in older patients (p int = 0.010). Conclusions. Given the high rates of adverse outcomes in these Asian AF patients with DM, efforts to optimize the management approach of these high-risk patients in a holistic or integrated care approach are needed.</jats:p
Probing the bradycardic drug binding receptor of HCN-encoded pacemaker channels
If (or Ih), encoded by the hyperpolarization-activated, cyclic nucleotide-gated (HCN1–4) channel gene family, contributes significantly to cardiac pacing. Bradycardic agents such as ZD7288 that target HCN channels have been developed, but the molecular configuration of their receptor is poorly defined. Here, we probed the drug receptor by systematically introducing alanine scanning substitutions into the selectivity filter (C347A, I348A, G349A, Y350A, G351A in the P-loop), outer (P355A, V356A, S357A, M358A in the P-S6 linker), and inner (M377A, F378A, V379A in S6) pore vestibules of HCN1 channels. When heterologously expressed in human embryonic kidney 293 cells for patch-clamp recordings, I348A, G349A, Y350A, G351A, P355A, and V356A did not produce measurable currents. The half-blocking concentration (IC50) of wild type (WT) for ZD7288 was 25.8 ± 9.7 μM. While the IC50 of M358A was identical to WT, those of C347A, S357A, F378A, and V379A markedly increased to 137.6 ± 56.4, 113.3 ± 34.1, 587.1 ± 167.5, and 1726.3 ± 673.4 μM, respectively (p < 0.05). Despite the proximity of the S6 residues studied, M377A was hypersensitive (IC50 = 5.1 ± 0.7 μM; p < 0.05) implicating site specificity. To explore the energetic interactions among the S6 residues, double and triple substitutions (M377A/F378A, M377A/V379A, F378A/V379A, and M377A/F378A/V379A) were generated for thermodynamic cycle analysis. Specific interactions with coupling energies (ΔΔG) >1 kT for M377–F378 and F378–V379 but not M377–V379 were identified. Based on these new data and others, we proposed a refined drug-blocking model that may lead to improved antiarrhythmics and bioartificial pacemaker designs
Calcium Homeostasis in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes
Rationale: Cardiomyocytes generated from human induced pluripotent stem cells (hiPSCs) are suggested as the most promising candidate to replenish cardiomyocyte loss in regenerative medicine. Little is known about their calcium homeostasis, the key process underlying excitation-contraction coupling. Objective: We investigated the calcium handling properties of hiPSC-derived cardiomyocytes and compared with those from human embryonic stem cells (hESCs). Methods and Results: We differentiated cardiomyocytes from hiPSCs (IMR90 and KS1) and hESCs (H7 and HES3) with established protocols. Beating outgrowths from embryoid bodies were typically observed 2 weeks after induction. Cells in these outgrowths were stained positively for tropomyosin and sarcomeric alpha-actinin. Reverse-transcription polymerase chain reaction studies demonstrated the expressions of cardiac-specific markers in both hiPSC- and hESC-derived cardiomyocytes. Calcium handling properties of 20-day-old hiPSC- and hESC-derived cardiomyocytes were investigated using fluorescence confocal microscopy. Compared with hESC-derived cardiomyocytes, spontaneous calcium transients from both lines of hiPSC-derived cardiomyocytes were of significantly smaller amplitude and with slower maximal upstroke velocity. Better caffeine-induced calcium handling kinetics in hESC-CMs indicates a higher sacroplasmic recticulum calcium store. Furthermore, in contrast with hESC-derived cardiomyocytes, ryanodine did not reduce the amplitudes, maximal upstroke and decay velocity of calcium transients of hiPSC-derived cardiomyocytes. In addition, spatial inhomogeneity in temporal properties of calcium transients across the width of cardiomyocytes was more pronounced in hiPSC-derived cardiomyocytes than their hESC counterpart as revealed line-scan calcium imaging. Expressions of the key calcium-handling proteins including ryanodine recptor-2 (RyR2), sacroplasmic recticulum calcium-ATPase (SERCA), junction (Jun) and triadin (TRDN), were significantly lower in hiPSC than in hESCs. Conclusions: The results indicate the calcium handling properties of hiPSC-derived cardiomyocytes are relatively immature to hESC counterparts. © 2011 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201
Myocardial Structural Alteration and Systolic Dysfunction in Preclinical Hypertrophic Cardiomyopathy Mutation Carriers
BACKGROUND: To evaluate the presence of myocardial structural alterations and subtle myocardial dysfunction during familial screening in asymptomatic mutation carriers without hypertrophic cardiomyopathy (HCM) phenotype. METHODS AND FINDINGS: Sixteen HCM families with pathogenic mutation were studied and 46 patients with phenotype expression (Mut+/Phen+) and 47 patients without phenotype expression (Mut+/Phen-) were observed. Twenty-five control subjects, matched with the Mut+/Phen- group, were recruited for comparison. Echocardiography was performed to evaluate conventional parameters, myocardial structural alteration by calibrated integrated backscatter (cIBS) and global and segmental longitudinal strain by speckle tracking analysis. All 3 groups had similar left ventricular dimensions and ejection fraction. Basal anteroseptal cIBS was the highest in Mut+/Phen+ patients (-14.0+/-4.6 dB, p-19.0 dB basal anteroseptal cIBS or >-18.0% basal anteroseptal longitudinal strain had a sensitivity of 98% and a specificity of 72% in differentiating Mut+/Phen- group from controls. CONCLUSION: The use of cIBS and segmental longitudinal strain can differentiate HCM Mut+/Phen- patients from controls with important clinical implications for the family screening and follow-up of these patients.published_or_final_versio
Characterization of Multiple Ion Channels in Cultured Human Cardiac Fibroblasts
Background: Although fibroblast-to-myocyte electrical coupling is experimentally suggested, electrophysiology of cardiac fibroblasts is not as well established as contractile cardiac myocytes. The present study was therefore designed to characterize ion channels in cultured human cardiac fibroblasts. Methods and Findings: A whole-cell patch voltage clamp technique and RT-PCR were employed to determine ion channels expression and their molecular identities. We found that multiple ion channels were heterogeneously expressed in human cardiac fibroblasts. These include a big conductance Ca2+-activated K+ current (BKCa) in most (88%) human cardiac fibroblasts, a delayed rectifier K+ current (IKDR) and a transient outward K+ current (Ito) in a small population (15 and 14%, respectively) of cells, an inwardly-rectifying K+ current (IKir) in 24% of cells, and a chloride current (ICl) in 7% of cells under isotonic conditions. In addition, two types of voltage-gated Na+ currents (INa) with distinct properties were present in most (61%) human cardiac fibroblasts. One was a slowly inactivated current with a persistent component, sensitive to tetrodotoxin (TTX) inhibition (INa.TTX, IC50 = 7.8 nM), the other was a rapidly inactivated current, relatively resistant to TTX (INa.TTXR, IC50 = 1.8 μM). RT-PCR revealed the molecular identities (mRNAs) of these ion channels in human cardiac fibroblasts, including KCa.1.1 (responsible for BKCa), Kv1.5, Kv1.6 (responsible for IKDR), Kv4.2, Kv4.3 (responsible for Ito), Kir2.1, Kir2.3 (for IKir), Clnc3 (for ICl), NaV1.2, NaV1.3, NaV1.6, NaV1.7 (for INa.TTX), and NaV1.5 (for INa.TTXR). Conclusions: These results provide the first information that multiple ion channels are present in cultured human cardiac fibroblasts, and suggest the potential contribution of these ion channels to fibroblast-myocytes electrical coupling. © 2009 Li et al.published_or_final_versio
- …