9 research outputs found

    Global, regional, and national prevalence of adult overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021

    Get PDF
    Background: Overweight and obesity is a global epidemic. Forecasting future trajectories of the epidemic is crucial for providing an evidence base for policy change. In this study, we examine the historical trends of the global, regional, and national prevalence of adult overweight and obesity from 1990 to 2021 and forecast the future trajectories to 2050. Methods: Leveraging established methodology from the Global Burden of Diseases, Injuries, and Risk Factors Study, we estimated the prevalence of overweight and obesity among individuals aged 25 years and older by age and sex for 204 countries and territories from 1990 to 2050. Retrospective and current prevalence trends were derived based on both self-reported and measured anthropometric data extracted from 1350 unique sources, which include survey microdata and reports, as well as published literature. Specific adjustment was applied to correct for self-report bias. Spatiotemporal Gaussian process regression models were used to synthesise data, leveraging both spatial and temporal correlation in epidemiological trends, to optimise the comparability of results across time and geographies. To generate forecast estimates, we used forecasts of the Socio-demographic Index and temporal correlation patterns presented as annualised rate of change to inform future trajectories. We considered a reference scenario assuming the continuation of historical trends. Findings: Rates of overweight and obesity increased at the global and regional levels, and in all nations, between 1990 and 2021. In 2021, an estimated 1·00 billion (95% uncertainty interval [UI] 0·989–1·01) adult males and 1·11 billion (1·10–1·12) adult females had overweight and obesity. China had the largest population of adults with overweight and obesity (402 million [397–407] individuals), followed by India (180 million [167–194]) and the USA (172 million [169–174]). The highest age-standardised prevalence of overweight and obesity was observed in countries in Oceania and north Africa and the Middle East, with many of these countries reporting prevalence of more than 80% in adults. Compared with 1990, the global prevalence of obesity had increased by 155·1% (149·8–160·3) in males and 104·9% (95% UI 100·9–108·8) in females. The most rapid rise in obesity prevalence was observed in the north Africa and the Middle East super-region, where age-standardised prevalence rates in males more than tripled and in females more than doubled. Assuming the continuation of historical trends, by 2050, we forecast that the total number of adults living with overweight and obesity will reach 3·80 billion (95% UI 3·39–4·04), over half of the likely global adult population at that time. While China, India, and the USA will continue to constitute a large proportion of the global population with overweight and obesity, the number in the sub-Saharan Africa super-region is forecasted to increase by 254·8% (234·4–269·5). In Nigeria specifically, the number of adults with overweight and obesity is forecasted to rise to 141 million (121–162) by 2050, making it the country with the fourth-largest population with overweight and obesity. Interpretation: No country to date has successfully curbed the rising rates of adult overweight and obesity. Without immediate and effective intervention, overweight and obesity will continue to increase globally. Particularly in Asia and Africa, driven by growing populations, the number of individuals with overweight and obesity is forecast to rise substantially. These regions will face a considerable increase in obesity-related disease burden. Merely acknowledging obesity as a global health issue would be negligent on the part of global health and public health practitioners; more aggressive and targeted measures are required to address this crisis, as obesity is one of the foremost avertible risks to health now and in the future and poses an unparalleled threat of premature disease and death at local, national, and global levels. Funding: Bill & Melinda Gates Foundation

    Global, regional, and national prevalence of adult overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021

    Get PDF
    Background: Overweight and obesity is a global epidemic. Forecasting future trajectories of the epidemic is crucial for providing an evidence base for policy change. In this study, we examine the historical trends of the global, regional, and national prevalence of adult overweight and obesity from 1990 to 2021 and forecast the future trajectories to 2050. Methods: Leveraging established methodology from the Global Burden of Diseases, Injuries, and Risk Factors Study, we estimated the prevalence of overweight and obesity among individuals aged 25 years and older by age and sex for 204 countries and territories from 1990 to 2050. Retrospective and current prevalence trends were derived based on both self-reported and measured anthropometric data extracted from 1350 unique sources, which include survey microdata and reports, as well as published literature. Specific adjustment was applied to correct for self-report bias. Spatiotemporal Gaussian process regression models were used to synthesise data, leveraging both spatial and temporal correlation in epidemiological trends, to optimise the comparability of results across time and geographies. To generate forecast estimates, we used forecasts of the Socio-demographic Index and temporal correlation patterns presented as annualised rate of change to inform future trajectories. We considered a reference scenario assuming the continuation of historical trends. Findings: Rates of overweight and obesity increased at the global and regional levels, and in all nations, between 1990 and 2021. In 2021, an estimated 1·00 billion (95% uncertainty interval [UI] 0·989–1·01) adult males and 1·11 billion (1·10–1·12) adult females had overweight and obesity. China had the largest population of adults with overweight and obesity (402 million [397–407] individuals), followed by India (180 million [167–194]) and the USA (172 million [169–174]). The highest age-standardised prevalence of overweight and obesity was observed in countries in Oceania and north Africa and the Middle East, with many of these countries reporting prevalence of more than 80% in adults. Compared with 1990, the global prevalence of obesity had increased by 155·1% (149·8–160·3) in males and 104·9% (95% UI 100·9–108·8) in females. The most rapid rise in obesity prevalence was observed in the north Africa and the Middle East super-region, where age-standardised prevalence rates in males more than tripled and in females more than doubled. Assuming the continuation of historical trends, by 2050, we forecast that the total number of adults living with overweight and obesity will reach 3·80 billion (95% UI 3·39–4·04), over half of the likely global adult population at that time. While China, India, and the USA will continue to constitute a large proportion of the global population with overweight and obesity, the number in the sub-Saharan Africa super-region is forecasted to increase by 254·8% (234·4–269·5). In Nigeria specifically, the number of adults with overweight and obesity is forecasted to rise to 141 million (121–162) by 2050, making it the country with the fourth-largest population with overweight and obesity. Interpretation: No country to date has successfully curbed the rising rates of adult overweight and obesity. Without immediate and effective intervention, overweight and obesity will continue to increase globally. Particularly in Asia and Africa, driven by growing populations, the number of individuals with overweight and obesity is forecast to rise substantially. These regions will face a considerable increase in obesity-related disease burden. Merely acknowledging obesity as a global health issue would be negligent on the part of global health and public health practitioners; more aggressive and targeted measures are required to address this crisis, as obesity is one of the foremost avertible risks to health now and in the future and poses an unparalleled threat of premature disease and death at local, national, and global levels. Funding: Bill & Melinda Gates Foundation

    Global, regional, and national prevalence of child and adolescent overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021

    No full text
    Background: Despite the well documented consequences of obesity during childhood and adolescence and future risks of excess body mass on non-communicable diseases in adulthood, coordinated global action on excess body mass in early life is still insufficient. Inconsistent measurement and reporting are a barrier to specific targets, resource allocation, and interventions. In this Article we report current estimates of overweight and obesity across childhood and adolescence, progress over time, and forecasts to inform specific actions. Methods: Using established methodology from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021, we modelled overweight and obesity across childhood and adolescence from 1990 to 2021, and then forecasted to 2050. Primary data for our models included 1321 unique measured and self-reported anthropometric data sources from 180 countries and territories from survey microdata, reports, and published literature. These data were used to estimate age-standardised global, regional, and national overweight prevalence and obesity prevalence (separately) for children and young adolescents (aged 5–14 years, typically in school and cared for by child health services) and older adolescents (aged 15–24 years, increasingly out of school and cared for by adult services) by sex for 204 countries and territories from 1990 to 2021. Prevalence estimates from 1990 to 2021 were generated using spatiotemporal Gaussian process regression models, which leveraged temporal and spatial correlation in epidemiological trends to ensure comparability of results across time and geography. Prevalence forecasts from 2022 to 2050 were generated using a generalised ensemble modelling approach assuming continuation of current trends. For every age-sex-location population across time (1990–2050), we estimated obesity (vs overweight) predominance using the log ratio of obesity percentage to overweight percentage. Findings: Between 1990 and 2021, the combined prevalence of overweight and obesity in children and adolescents doubled, and that of obesity alone tripled. By 2021, 93·1 million (95% uncertainty interval 89·6–96·6) individuals aged 5–14 years and 80·6 million (78·2–83·3) aged 15–24 years had obesity. At the super-region level in 2021, the prevalence of overweight and of obesity was highest in north Africa and the Middle East (eg, United Arab Emirates and Kuwait), and the greatest increase from 1990 to 2021 was seen in southeast Asia, east Asia, and Oceania (eg, Taiwan [province of China], Maldives, and China). By 2021, for females in both age groups, many countries in Australasia (eg, Australia) and in high-income North America (eg, Canada) had already transitioned to obesity predominance, as had males and females in a number of countries in north Africa and the Middle East (eg, United Arab Emirates and Qatar) and Oceania (eg, Cook Islands and American Samoa). From 2022 to 2050, global increases in overweight (not obesity) prevalence are forecasted to stabilise, yet the increase in the absolute proportion of the global population with obesity is forecasted to be greater than between 1990 and 2021, with substantial increases forecast between 2022 and 2030, which continue between 2031 and 2050. By 2050, super-region obesity prevalence is forecasted to remain highest in north Africa and the Middle East (eg, United Arab Emirates and Kuwait), and forecasted increases in obesity are still expected to be largest across southeast Asia, east Asia, and Oceania (eg, Timor-Leste and North Korea), but also in south Asia (eg, Nepal and Bangladesh). Compared with those aged 15–24 years, in most super-regions (except Latin America and the Caribbean and the high-income super-region) a greater proportion of those aged 5–14 years are forecasted to have obesity than overweight by 2050. Globally, 15·6% (12·7–17·2) of those aged 5–14 years are forecasted to have obesity by 2050 (186 million [141–221]), compared with 14·2% (11·4–15·7) of those aged 15–24 years (175 million [136–203]). We forecasted that by 2050, there will be more young males (aged 5–14 years) living with obesity (16·5% [13·3–18·3]) than overweight (12·9% [12·2–13·6]); while for females (aged 5–24 years) and older males (aged 15–24 years), overweight will remain more prevalent than obesity. At a regional level, the following populations are forecast to have transitioned to obesity (vs overweight) predominance before 2041–50: children and adolescents (males and females aged 5–24 years) in north Africa and the Middle East and Tropical Latin America; males aged 5–14 years in east Asia, central and southern sub-Saharan Africa, and central Latin America; females aged 5–14 years in Australasia; females aged 15–24 years in Australasia, high-income North America, and southern sub-Saharan Africa; and males aged 15–24 years in high-income North America. Interpretation: Both overweight and obesity increased substantially in every world region between 1990 and 2021, suggesting that current approaches to curbing increases in overweight and obesity have failed a generation of children and adolescents. Beyond 2021, overweight during childhood and adolescence is forecast to stabilise due to further increases in the population who have obesity. Increases in obesity are expected to continue for all populations in all world regions. Because substantial change is forecasted to occur between 2022 and 2030, immediate actions are needed to address this public health crisis. Funding: Bill & Melinda Gates Foundation and Australian National Health and Medical Research Council

    Global, regional, and national prevalence of child and adolescent overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021

    No full text
    Background: Despite the well documented consequences of obesity during childhood and adolescence and future risks of excess body mass on non-communicable diseases in adulthood, coordinated global action on excess body mass in early life is still insufficient. Inconsistent measurement and reporting are a barrier to specific targets, resource allocation, and interventions. In this Article we report current estimates of overweight and obesity across childhood and adolescence, progress over time, and forecasts to inform specific actions. Methods: Using established methodology from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021, we modelled overweight and obesity across childhood and adolescence from 1990 to 2021, and then forecasted to 2050. Primary data for our models included 1321 unique measured and self-reported anthropometric data sources from 180 countries and territories from survey microdata, reports, and published literature. These data were used to estimate age-standardised global, regional, and national overweight prevalence and obesity prevalence (separately) for children and young adolescents (aged 5–14 years, typically in school and cared for by child health services) and older adolescents (aged 15–24 years, increasingly out of school and cared for by adult services) by sex for 204 countries and territories from 1990 to 2021. Prevalence estimates from 1990 to 2021 were generated using spatiotemporal Gaussian process regression models, which leveraged temporal and spatial correlation in epidemiological trends to ensure comparability of results across time and geography. Prevalence forecasts from 2022 to 2050 were generated using a generalised ensemble modelling approach assuming continuation of current trends. For every age-sex-location population across time (1990–2050), we estimated obesity (vs overweight) predominance using the log ratio of obesity percentage to overweight percentage. Findings: Between 1990 and 2021, the combined prevalence of overweight and obesity in children and adolescents doubled, and that of obesity alone tripled. By 2021, 93·1 million (95% uncertainty interval 89·6–96·6) individuals aged 5–14 years and 80·6 million (78·2–83·3) aged 15–24 years had obesity. At the super-region level in 2021, the prevalence of overweight and of obesity was highest in north Africa and the Middle East (eg, United Arab Emirates and Kuwait), and the greatest increase from 1990 to 2021 was seen in southeast Asia, east Asia, and Oceania (eg, Taiwan [province of China], Maldives, and China). By 2021, for females in both age groups, many countries in Australasia (eg, Australia) and in high-income North America (eg, Canada) had already transitioned to obesity predominance, as had males and females in a number of countries in north Africa and the Middle East (eg, United Arab Emirates and Qatar) and Oceania (eg, Cook Islands and American Samoa). From 2022 to 2050, global increases in overweight (not obesity) prevalence are forecasted to stabilise, yet the increase in the absolute proportion of the global population with obesity is forecasted to be greater than between 1990 and 2021, with substantial increases forecast between 2022 and 2030, which continue between 2031 and 2050. By 2050, super-region obesity prevalence is forecasted to remain highest in north Africa and the Middle East (eg, United Arab Emirates and Kuwait), and forecasted increases in obesity are still expected to be largest across southeast Asia, east Asia, and Oceania (eg, Timor-Leste and North Korea), but also in south Asia (eg, Nepal and Bangladesh). Compared with those aged 15–24 years, in most super-regions (except Latin America and the Caribbean and the high-income super-region) a greater proportion of those aged 5–14 years are forecasted to have obesity than overweight by 2050. Globally, 15·6% (12·7–17·2) of those aged 5–14 years are forecasted to have obesity by 2050 (186 million [141–221]), compared with 14·2% (11·4–15·7) of those aged 15–24 years (175 million [136–203]). We forecasted that by 2050, there will be more young males (aged 5–14 years) living with obesity (16·5% [13·3–18·3]) than overweight (12·9% [12·2–13·6]); while for females (aged 5–24 years) and older males (aged 15–24 years), overweight will remain more prevalent than obesity. At a regional level, the following populations are forecast to have transitioned to obesity (vs overweight) predominance before 2041–50: children and adolescents (males and females aged 5–24 years) in north Africa and the Middle East and Tropical Latin America; males aged 5–14 years in east Asia, central and southern sub-Saharan Africa, and central Latin America; females aged 5–14 years in Australasia; females aged 15–24 years in Australasia, high-income North America, and southern sub-Saharan Africa; and males aged 15–24 years in high-income North America. Interpretation: Both overweight and obesity increased substantially in every world region between 1990 and 2021, suggesting that current approaches to curbing increases in overweight and obesity have failed a generation of children and adolescents. Beyond 2021, overweight during childhood and adolescence is forecast to stabilise due to further increases in the population who have obesity. Increases in obesity are expected to continue for all populations in all world regions. Because substantial change is forecasted to occur between 2022 and 2030, immediate actions are needed to address this public health crisis. Funding: Bill & Melinda Gates Foundation and Australian National Health and Medical Research Council

    Global, regional, and national prevalence of child and adolescent overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021

    Full text link

    Global, regional, and national trends in routine childhood vaccination coverage from 1980 to 2023 with forecasts to 2030: a systematic analysis for the Global Burden of Disease Study 2023

    Get PDF
    Background: Since its inception in 1974, the Essential Programme on Immunization (EPI) has achieved remarkable success, averting the deaths of an estimated 154 million children worldwide through routine childhood vaccination. However, more recent decades have seen persistent coverage inequities and stagnating progress, which have been further amplified by the COVID-19 pandemic. In 2019, WHO set ambitious goals for improving vaccine coverage globally through the Immunization Agenda 2030 (IA2030). Now halfway through the decade, understanding past and recent coverage trends can help inform and reorient strategies for approaching these aims in the next 5 years. Methods: Based on the Global Burden of Diseases, Injuries, and Risk Factors Study 2023, this study provides updated global, regional, and national estimates of routine childhood vaccine coverage from 1980 to 2023 for 204 countries and territories for 11 vaccine-dose combinations recommended by WHO for all children globally. Employing advanced modelling techniques, this analysis accounts for data biases and heterogeneity and integrates new methodologies to model vaccine scale-up and COVID-19 pandemic-related disruptions. To contextualise historic coverage trends and gains still needed to achieve the IA2030 coverage targets, we supplement these results with several secondary analyses: (1) we assess the effect of the COVID-19 pandemic on vaccine coverage; (2) we forecast coverage of select life-course vaccines up to 2030; and (3) we analyse progress needed to reduce the number of zero-dose children by half between 2023 and 2030. Findings: Overall, global coverage for the original EPI vaccines against diphtheria, tetanus, and pertussis (first dose [DTP1] and third dose [DTP3]), measles (MCV1), polio (Pol3), and tuberculosis (BCG) nearly doubled from 1980 to 2023. However, this long-term trend masks recent challenges. Coverage gains slowed between 2010 and 2019 in many countries and territories, including declines in 21 of 36 high-income countries and territories for at least one of these vaccine doses (excluding BCG, which has been removed from routine immunisation schedules in some countries and territories). The COVID-19 pandemic exacerbated these challenges, with global rates for these vaccines declining sharply since 2020, and still not returning to pre-COVID-19 pandemic levels as of 2023. Coverage for newer vaccines developed and introduced in more recent years, such as immunisations against pneumococcal disease (PCV3) and rotavirus (complete series; RotaC) and a second dose of the measles vaccine (MCV2), saw continued increases globally during the COVID-19 pandemic due to ongoing introductions and scale-ups, but at slower rates than expected in the absence of the pandemic. Forecasts to 2030 for DTP3, PCV3, and MCV2 suggest that only DTP3 would reach the IA2030 target of 90% global coverage, and only under an optimistic scenario. The number of zero-dose children, proxied as children younger than 1 year who do not receive DTP1, decreased by 74·9% (95% uncertainty interval 72·1-77·3) globally between 1980 and 2019, with most of those declines reached during the 1980s and the 2000s. After 2019, counts of zero-dose children rose to a COVID 19-era peak of 18·6 million (17·6-20·0) in 2021. Most zero-dose children remain concentrated in conflict-affected regions and those with various constraints on resources available to put towards vaccination services, particularly sub-Saharan Africa. As of 2023, more than 50% of the 15·7 million (14·6-17·0) global zero-dose children resided in just eight countries (Nigeria, India, Democratic Republic of the Congo, Ethiopia, Somalia, Sudan, Indonesia, and Brazil), emphasising persistent inequities. Interpretation: Our estimates of current vaccine coverage and forecasts to 2030 suggest that achieving IA2030 targets, such as halving zero-dose children compared with 2019 levels and reaching 90% global coverage for life-course vaccines DTP3, PCV3, and MCV2, will require accelerated progress. Substantial increases in coverage are necessary in many countries and territories, with those in sub-Saharan Africa and south Asia facing the greatest challenges. Recent declines will need to be reversed to restore previous coverage levels in Latin America and the Caribbean, especially for DTP1, DTP3, and Pol3. These findings underscore the crucial need for targeted, equitable immunisation strategies. Strengthening primary health-care systems, addressing vaccine misinformation and hesitancy, and adapting to local contexts are essential to advancing coverage. COVID-19 pandemic recovery efforts, such as WHO's Big Catch-Up, as well as efforts to bolster routine services must prioritise reaching marginalised populations and target subnational geographies to regain lost ground and achieve global immunisation goals

    The global, regional, and national burden of cancer, 1990–2023, with forecasts to 2050:a systematic analysis for the Global Burden of Disease Study 2023

    No full text
    Background: Cancer is a leading cause of death globally. Accurate cancer burden information is crucial for policy planning, but many countries do not have up-to-date cancer surveillance data. To inform global cancer-control efforts, we used the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2023 framework to generate and analyse estimates of cancer burden for 47 cancer types or groupings by age, sex, and 204 countries and territories from 1990 to 2023, cancer burden attributable to selected risk factors from 1990 to 2023, and forecasted cancer burden up to 2050. Methods: Cancer estimation in GBD 2023 used data from population-based cancer registration systems, vital registration systems, and verbal autopsies. Cancer mortality was estimated using ensemble models, with incidence informed by mortality estimates and mortality-to-incidence ratios (MIRs). Prevalence estimates were generated from modelled survival estimates, then multiplied by disability weights to estimate years lived with disability (YLDs). Years of life lost (YLLs) were estimated by multiplying age-specific cancer deaths by the GBD standard life expectancy at the age of death. Disability-adjusted life-years (DALYs) were calculated as the sum of YLLs and YLDs. We used the GBD 2023 comparative risk assessment framework to estimate cancer burden attributable to 44 behavioural, environmental and occupational, and metabolic risk factors. To forecast cancer burden from 2024 to 2050, we used the GBD 2023 forecasting framework, which included forecasts of relevant risk factor exposures and used Socio-demographic Index as a covariate for forecasting the proportion of each cancer not affected by these risk factors. Progress towards the UN Sustainable Development Goal (SDG) target 3.4 aim to reduce non-communicable disease mortality by a third between 2015 and 2030 was estimated for cancer. Findings: In 2023, excluding non-melanoma skin cancers, there were 18·5 million (95% uncertainty interval 16·4 to 20·7) incident cases of cancer and 10·4 million (9·65 to 10·9) deaths, contributing to 271 million (255 to 285) DALYs globally. Of these, 57·9% (56·1 to 59·8) of incident cases and 65·8% (64·3 to 67·6) of cancer deaths occurred in low-income to upper-middle-income countries based on World Bank income group classifications. Cancer was the second leading cause of deaths globally in 2023 after cardiovascular diseases. There were 4·33 million (3·85 to 4·78) risk-attributable cancer deaths globally in 2023, comprising 41·7% (37·8 to 45·4) of all cancer deaths. Risk-attributable cancer deaths increased by 72·3% (57·1 to 86·8) from 1990 to 2023, whereas overall global cancer deaths increased by 74·3% (62·2 to 86·2) over the same period. The reference forecasts (the most likely future) estimate that in 2050 there will be 30·5 million (22·9 to 38·9) cases and 18·6 million (15·6 to 21·5) deaths from cancer globally, 60·7% (41·9 to 80·6) and 74·5% (50·1 to 104·2) increases from 2024, respectively. These forecasted increases in deaths are greater in low-income and middle-income countries (90·6% [61·0 to 127·0]) compared with high-income countries (42·8% [28·3 to 58·6]). Most of these increases are likely due to demographic changes, as age-standardised death rates are forecast to change by –5·6% (–12·8 to 4·6) between 2024 and 2050 globally. Between 2015 and 2030, the probability of dying due to cancer between the ages of 30 years and 70 years was forecasted to have a relative decrease of 6·5% (3·2 to 10·3). Interpretation: Cancer is a major contributor to global disease burden, with increasing numbers of cases and deaths forecasted up to 2050 and a disproportionate growth in burden in countries with scarce resources. The decline in age-standardised mortality rates from cancer is encouraging but insufficient to meet the SDG target set for 2030. Effectively and sustainably addressing cancer burden globally will require comprehensive national and international efforts that consider health systems and context in the development and implementation of cancer-control strategies across the continuum of prevention, diagnosis, and treatment. Funding: Gates Foundation, St Jude Children's Research Hospital, and St Baldrick's Foundation.</p

    Global, regional, and national trends in routine childhood vaccination coverage from 1980 to 2023 with forecasts to 2030: a systematic analysis for the Global Burden of Disease Study 2023

    No full text
    Background: Since its inception in 1974, the Essential Programme on Immunization (EPI) has achieved remarkable success, averting the deaths of an estimated 154 million children worldwide through routine childhood vaccination. However, more recent decades have seen persistent coverage inequities and stagnating progress, which have been further amplified by the COVID-19 pandemic. In 2019, WHO set ambitious goals for improving vaccine coverage globally through the Immunization Agenda 2030 (IA2030). Now halfway through the decade, understanding past and recent coverage trends can help inform and reorient strategies for approaching these aims in the next 5 years. Methods: Based on the Global Burden of Diseases, Injuries, and Risk Factors Study 2023, this study provides updated global, regional, and national estimates of routine childhood vaccine coverage from 1980 to 2023 for 204 countries and territories for 11 vaccine-dose combinations recommended by WHO for all children globally. Employing advanced modelling techniques, this analysis accounts for data biases and heterogeneity and integrates new methodologies to model vaccine scale-up and COVID-19 pandemic-related disruptions. To contextualise historic coverage trends and gains still needed to achieve the IA2030 coverage targets, we supplement these results with several secondary analyses: (1) we assess the effect of the COVID-19 pandemic on vaccine coverage; (2) we forecast coverage of select life-course vaccines up to 2030; and (3) we analyse progress needed to reduce the number of zero-dose children by half between 2023 and 2030. Findings: Overall, global coverage for the original EPI vaccines against diphtheria, tetanus, and pertussis (first dose [DTP1] and third dose [DTP3]), measles (MCV1), polio (Pol3), and tuberculosis (BCG) nearly doubled from 1980 to 2023. However, this long-term trend masks recent challenges. Coverage gains slowed between 2010 and 2019 in many countries and territories, including declines in 21 of 36 high-income countries and territories for at least one of these vaccine doses (excluding BCG, which has been removed from routine immunisation schedules in some countries and territories). The COVID-19 pandemic exacerbated these challenges, with global rates for these vaccines declining sharply since 2020, and still not returning to pre-COVID-19 pandemic levels as of 2023. Coverage for newer vaccines developed and introduced in more recent years, such as immunisations against pneumococcal disease (PCV3) and rotavirus (complete series; RotaC) and a second dose of the measles vaccine (MCV2), saw continued increases globally during the COVID-19 pandemic due to ongoing introductions and scale-ups, but at slower rates than expected in the absence of the pandemic. Forecasts to 2030 for DTP3, PCV3, and MCV2 suggest that only DTP3 would reach the IA2030 target of 90% global coverage, and only under an optimistic scenario. The number of zero-dose children, proxied as children younger than 1 year who do not receive DTP1, decreased by 74·9% (95% uncertainty interval 72·1-77·3) globally between 1980 and 2019, with most of those declines reached during the 1980s and the 2000s. After 2019, counts of zero-dose children rose to a COVID 19-era peak of 18·6 million (17·6-20·0) in 2021. Most zero-dose children remain concentrated in conflict-affected regions and those with various constraints on resources available to put towards vaccination services, particularly sub-Saharan Africa. As of 2023, more than 50% of the 15·7 million (14·6-17·0) global zero-dose children resided in just eight countries (Nigeria, India, Democratic Republic of the Congo, Ethiopia, Somalia, Sudan, Indonesia, and Brazil), emphasising persistent inequities. Interpretation: Our estimates of current vaccine coverage and forecasts to 2030 suggest that achieving IA2030 targets, such as halving zero-dose children compared with 2019 levels and reaching 90% global coverage for life-course vaccines DTP3, PCV3, and MCV2, will require accelerated progress. Substantial increases in coverage are necessary in many countries and territories, with those in sub-Saharan Africa and south Asia facing the greatest challenges. Recent declines will need to be reversed to restore previous coverage levels in Latin America and the Caribbean, especially for DTP1, DTP3, and Pol3. These findings underscore the crucial need for targeted, equitable immunisation strategies. Strengthening primary health-care systems, addressing vaccine misinformation and hesitancy, and adapting to local contexts are essential to advancing coverage. COVID-19 pandemic recovery efforts, such as WHO's Big Catch-Up, as well as efforts to bolster routine services must prioritise reaching marginalised populations and target subnational geographies to regain lost ground and achieve global immunisation goals. Funding: The Bill &amp; Melinda Gates Foundation and Gavi, the Vaccine Alliance

    Global, regional, and national prevalence of child and adolescent overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021

    Get PDF
    Background Despite the well documented consequences of obesity during childhood and adolescence and future risks of excess body mass on non-communicable diseases in adulthood, coordinated global action on excess body mass in early life is still insufficient. Inconsistent measurement and reporting are a barrier to specific targets, resource allocation, and interventions. In this Article we report current estimates of overweight and obesity across childhood and adolescence, progress over time, and forecasts to inform specific actions. Methods Using established methodology from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021, we modelled overweight and obesity across childhood and adolescence from 1990 to 2021, and then forecasted to 2050. Primary data for our models included 1321 unique measured and self-reported anthropometric data sources from 180 countries and territories from survey microdata, reports, and published literature. These data were used to estimate age-standardised global, regional, and national overweight prevalence and obesity prevalence (separately) for children and young adolescents (aged 5–14 years, typically in school and cared for by child health services) and older adolescents (aged 15–24 years, increasingly out of school and cared for by adult services) by sex for 204 countries and territories from 1990 to 2021. Prevalence estimates from 1990 to 2021 were generated using spatiotemporal Gaussian process regression models, which leveraged temporal and spatial correlation in epidemiological trends to ensure comparability of results across time and geography. Prevalence forecasts from 2022 to 2050 were generated using a generalised ensemble modelling approach assuming continuation of current trends. For every age-sex-location population across time (1990–2050), we estimated obesity (vs overweight) predominance using the log ratio of obesity percentage to overweight percentage. Findings Between 1990 and 2021, the combined prevalence of overweight and obesity in children and adolescents doubled, and that of obesity alone tripled. By 2021, 93·1 million (95% uncertainty interval 89·6–96·6) individuals aged 5–14 years and 80·6 million (78·2–83·3) aged 15–24 years had obesity. At the super-region level in 2021, the prevalence of overweight and of obesity was highest in north Africa and the Middle East (eg, United Arab Emirates and Kuwait), and the greatest increase from 1990 to 2021 was seen in southeast Asia, east Asia, and Oceania (eg, Taiwan [province of China], Maldives, and China). By 2021, for females in both age groups, many countries in Australasia (eg, Australia) and in high-income North America (eg, Canada) had already transitioned to obesity predominance, as had males and females in a number of countries in north Africa and the Middle East (eg, United Arab Emirates and Qatar) and Oceania (eg, Cook Islands and American Samoa). From 2022 to 2050, global increases in overweight (not obesity) prevalence are forecasted to stabilise, yet the increase in the absolute proportion of the global population with obesity is forecasted to be greater than between 1990 and 2021, with substantial increases forecast between 2022 and 2030, which continue between 2031 and 2050. By 2050, super-region obesity prevalence is forecasted to remain highest in north Africa and the Middle East (eg, United Arab Emirates and Kuwait), and forecasted increases in obesity are still expected to be largest across southeast Asia, east Asia, and Oceania (eg, Timor-Leste and North Korea), but also in south Asia (eg, Nepal and Bangladesh). Compared with those aged 15–24 years, in most super-regions (except Latin America and the Caribbean and the high-income super-region) a greater proportion of those aged 5–14 years are forecasted to have obesity than overweight by 2050. Globally, 15·6% (12·7–17·2) of those aged 5–14 years are forecasted to have obesity by 2050 (186 million [141–221]), compared with 14·2% (11·4–15·7) of those aged 15–24 years (175 million [136–203]). We forecasted that by 2050, there will be more young males (aged 5–14 years) living with obesity (16·5% [13·3–18·3]) than overweight (12·9% [12·2–13·6]); while for females (aged 5–24 years) and older males (aged 15–24 years), overweight will remain more prevalent than obesity. At a regional level, the following populations are forecast to have transitioned to obesity (vs overweight) predominance before 2041–50: children and adolescents (males and females aged 5–24 years) in north Africa and the Middle East and Tropical Latin America; males aged 5–14 years in east Asia, central and southern sub-Saharan Africa, and central Latin America; females aged 5–14 years in Australasia; females aged 15–24 years in Australasia, high-income North America, and southern sub-Saharan Africa; and males aged 15–24 years in high-income North America. Interpretation Both overweight and obesity increased substantially in every world region between 1990 and 2021, suggesting that current approaches to curbing increases in overweight and obesity have failed a generation of children and adolescents. Beyond 2021, overweight during childhood and adolescence is forecast to stabilise due to further increases in the population who have obesity. Increases in obesity are expected to continue for all populations in all world regions. Because substantial change is forecasted to occur between 2022 and 2030, immediate actions are needed to address this public health crisis. Funding Bill & Melinda Gates Foundation and Australian National Health and Medical Research Council
    corecore