78 research outputs found

    Sea level Projections with Machine Learning using Altimetry and Climate Model ensembles

    Full text link
    Satellite altimeter observations retrieved since 1993 show that the global mean sea level is rising at an unprecedented rate (3.4mm/year). With almost three decades of observations, we can now investigate the contributions of anthropogenic climate-change signals such as greenhouse gases, aerosols, and biomass burning in this rising sea level. We use machine learning (ML) to investigate future patterns of sea level change. To understand the extent of contributions from the climate-change signals, and to help in forecasting sea level change in the future, we turn to climate model simulations. This work presents a machine learning framework that exploits both satellite observations and climate model simulations to generate sea level rise projections at a 2-degree resolution spatial grid, 30 years into the future. We train fully connected neural networks (FCNNs) to predict altimeter values through a non-linear fusion of the climate model hindcasts (for 1993-2019). The learned FCNNs are then applied to future climate model projections to predict future sea level patterns. We propose segmenting our spatial dataset into meaningful clusters and show that clustering helps to improve predictions of our ML model

    Paleoclimate constraints on the spatiotemporal character of past and future droughts

    Get PDF
    Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(22), (2020): 9883-9903, https://doi.org/10.1175/JCLI-D-20-0004.1.Machine-learning-based methods that identify drought in three-dimensional space–time are applied to climate model simulations and tree-ring-based reconstructions of hydroclimate over the Northern Hemisphere extratropics for the past 1000 years, as well as twenty-first-century projections. Analyzing reconstructed and simulated drought in this context provides a paleoclimate constraint on the spatiotemporal characteristics of simulated droughts. Climate models project that there will be large increases in the persistence and severity of droughts over the coming century, but with little change in their spatial extent. Nevertheless, climate models exhibit biases in the spatiotemporal characteristics of persistent and severe droughts over parts of the Northern Hemisphere. We use the paleoclimate record and results from a linear inverse modeling-based framework to conclude that climate models underestimate the range of potential future hydroclimate states. Complicating this picture, however, are divergent changes in the characteristics of persistent and severe droughts when quantified using different hydroclimate metrics. Collectively our results imply that these divergent responses and the aforementioned biases must be better understood if we are to increase confidence in future hydroclimate projections. Importantly, the novel framework presented herein can be applied to other climate features to robustly describe their spatiotemporal characteristics and provide constraints on future changes to those characteristics.This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement 1852977. JAF was also supported by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy's Office of Biological & Environmental Research (BER) via National Science Foundation IA 1844590. JS was supported in part by the U.S. National Science Foundation through Grants AGS-1602920 and AGS-1805490, and by the National Oceanic and Atmospheric Administration by Grant NA20OAR4310425. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1) for producing and making available their model output. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portal. We thank the editor and two reviewers for comments that greatly improved the quality of this manuscript. This is SOEST Publication No. 11116 and LDEO Publication No. 8450.2021-04-1

    Potential Influences of Volcanic Eruptions on Future Global Land Monsoon Precipitation Changes

    Get PDF
    The global monsoon system is of exceptional socioeconomic importance owing to its impacts on two-thirds of the globe’s population. Major volcanic eruptions strongly influence global land monsoon (GLM) precipitation change. By using 60 plausible eruption scenarios sampled from reconstructed volcanic proxies over the past 2,500 years, 21st century volcanic influences on GLM precipitation projections are examined with an Earth system model under a moderate emission scenario. The decadal-scale ensemble spread with realistic eruptions (VOLC) increases by 17.5% and 20.1% compared to no-volcanic (NO-VOLC) and constant background-volcanic (VOLC-CONST) scenarios, respectively. Compared with NO-VOLC, the centennial mean VOLC GLM precipitation shows a 10% overall reduction and regionally, Asia is the most impacted. Changes in atmospheric circulation in the aftermath of large volcanic eruptions match the global warming response patterns well with opposite sign, with the North American monsoon precipitation enhanced following large volcanic eruptions, which is in sharp contrast to the robust decrease in Asian monsoon rainfall. Volcanic activity could delay the time of emergence of anthropogenic influence by five years on average over about 60% of the GLM area. Our results demonstrate the importance of statistical representation of potential volcanism for the projections of future monsoon variability. Quantifying volcanic impacts on regional climate projections and their socioeconomic influences on infrastructure planning, food security, and disaster management should be a priority of future work.publishedVersio

    Origin of interannual variability in global mean sea level

    Get PDF
    Author Posting. © National Academy of Sciences, 2020. This article is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 117(25), (2020): 13983-13990, doi: 10.1073/pnas.1922190117.The two dominant drivers of the global mean sea level (GMSL) variability at interannual timescales are steric changes due to changes in ocean heat content and barystatic changes due to the exchange of water mass between land and ocean. With Gravity Recovery and Climate Experiment (GRACE) satellites and Argo profiling floats, it has been possible to measure the relative steric and barystatic contributions to GMSL since 2004. While efforts to “close the GMSL budget” with satellite altimetry and other observing systems have been largely successful with regards to trends, the short time period covered by these records prohibits a full understanding of the drivers of interannual to decadal variability in GMSL. One particular area of focus is the link between variations in the El Niño−Southern Oscillation (ENSO) and GMSL. Recent literature disagrees on the relative importance of steric and barystatic contributions to interannual to decadal variability in GMSL. Here, we use a multivariate data analysis technique to estimate variability in barystatic and steric contributions to GMSL back to 1982. These independent estimates explain most of the observed interannual variability in satellite altimeter-measured GMSL. Both processes, which are highly correlated with ENSO variations, contribute about equally to observed interannual GMSL variability. A theoretical scaling analysis corroborates the observational results. The improved understanding of the origins of interannual variability in GMSL has important implications for our understanding of long-term trends in sea level, the hydrological cycle, and the planet’s radiation imbalance.The research was carried out at JPL, California Institute of Technology, under a contract with NASA. This study was funded by NASA Grants NNX17AH35G (Ocean Surface Topography Science Team), 80NSSC17K0564, and 80NSSC17K0565 (NASA Sea Level Change Team). The efforts of J.T.F. in this work were also supported by NSF Award AGS-1419571, and by the Regional and Global Model Analysis component of the Earth and Environmental System Modeling Program of the US Department of Energy's Office of Biological & Environmental Research via National Science Foundation Grant IA 1844590. C.G.P. was supported by the J. Lamar Worzel Assistant Scientist Fund and the Penzance Endowed Fund in Support of Assistant Scientists at the Woods Hole Oceanographic Institution.2020-12-0
    corecore