2,211 research outputs found

    Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation

    Get PDF
    It has been established that observed local and regional levels of secondary organic aerosols (SOA) in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to estimate the potential contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic precursors (S/IVOC) in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA), their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007) ("ROB") and Grieshop et al. (2009) ("GRI") are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS) data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (2–4 times) with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009), both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The predicted production from anthropogenic and biomass burning S/IVOC represents 40–60% of the total measured SOA at the surface during the day and is somewhat larger than that from commonly measured aromatic VOCs, especially at the T1 site at the edge of the city. The SOA production from the continued multi-generation S/IVOC oxidation products continues actively downwind. Similar to aircraft observations, the predicted OA/ΔCO ratio for the ROB case increases from 20–30 μg sm<sup>−3</sup> ppm<sup>−1</sup> up to 60–70 μg sm<sup>−3</sup> ppm<sup>−1</sup> between a fresh and 1-day aged air mass, while the GRI case produces a 30% higher OA growth than observed. The predicted average O/C ratio of total OA for the ROB case is 0.16 at T0, substantially below observed value of 0.5. A much better agreement for O/C ratios and temporal variability (<i>R</i><sup>2</sup>=0.63) is achieved with the updated GRI treatment. Both treatments show a deficiency in regard to POA ageing with a tendency to over-evaporate POA upon dilution of the urban plume suggesting that atmospheric HOA may be less volatile than assumed in these parameterizations. This study highlights the important potential role of S/IVOC chemistry in the SOA budget in this region, and highlights the need for further improvements in available parameterizations. The agreement observed in this study is not sufficient evidence to conclude that S/IVOC are the major missing SOA source in megacity environments. The model is still very underconstrained, and other possible pathways such as formation from very volatile species like glyoxal may explain some of the mass and especially increase the O/C ratio

    What is required to end the AIDS epidemic as a public health threat by 2030? The cost and impact of the fast-track approach

    Get PDF
    In 2011 a new Investment Framework was proposed that described how the scale-up of key HIV interventions could dramatically reduce new HIV infections and AIDS-related deaths in low and middle income countries by 2015. This framework included ambitious coverage goals for prevention and treatment services for 2015, resulting in a reduction of new HIV infections by more than half, in line with the goals of the declaration of the UN High Level Meeting in June 2011. However, the approach suggested a leveling in the number of new infections at about 1 million annually-far from the UNAIDS goal of ending AIDS by 2030. In response, UNAIDS has developed the Fast-Track approach that is intended to provide a roadmap to the actions required to achieve this goal. The Fast-Track approach is predicated on a rapid scale-up of focused, effective prevention and treatment services over the next 5 years and then maintaining a high level of programme implementation until 2030. Fast-Track aims to reduce new infections and AIDS-related deaths by 90% from 2010 to 2030 and proposes a set of biomedical, behavioral and enabling intervention targets for 2020 and 2030 to achieve that goal, including the rapid scale-up initiative for antiretroviral treatment known as 90-90-90. Compared to a counterfactual scenario of constant coverage for all services at early-2015 levels, the Fast-Track approach would avert 18 million HIV infections and 11 million deaths from 2016 to 2030 globally. This paper describes the analysis that produced these targets and the estimated resources needed to achieve them in low- and middle-income countries. It indicates that it is possible to achieve these goals with a significant push to achieve rapid scale-up of key interventions between now and 2020. The annual resources required from all sources would rise to US7.4Bninlowincomecountries,US7.4Bn in low-income countries, US8.2Bn in lower middle-income countries and US$10.5Bn in upper-middle-income-countries by 2020 before declining approximately 9% by 2030

    Comparisons between SCIAMACHY atmospheric CO<sub>2</sub> retrieved using (FSI) WFM-DOAS to ground based FTIR data and the TM3 chemistry transport model

    No full text
    International audienceAtmospheric CO2 concentrations, retrieved from spectral measurements made in the near infrared (NIR) by the SCIAMACHY instrument, using Full Spectral Initiation Weighting Function Modified Differential Optical Absorption Spectroscopy (FSI WFM-DOAS), are compared to ground based Fourier Transform Infrared (FTIR) data and to the output from a global chemistry-transport model. Analysis of the FSI WFM-DOAS retrievals with respect to the ground based FTIR instrument, located at Egbert, Canada, show good agreement with an average negative bias of approximately ?4.0% with a standard deviation of ~3.0%. This bias which exhibits an apparent seasonal trend, is of unknown origin, though slight differences between the averaging kernels of the instruments and the limited temporal coverage of the FTIR data may be the cause. The relative scatter of the retrieved vertical column densities is comparable to the spread of the FTIR measurements themselves. Normalizing the CO2 columns using the surface pressure does not affect the magnitude of this bias although it slightly increases the scatter of the FSI data. Comparisons of the FSI retrievals to the TM3 global chemistry-transport model, performed over four selected Northern Hemisphere scenes show good agreement. The correlation, between the time series of the SCIAMACHY and model monthly scene averages, are ~0.7 or greater, demonstrating the ability of SCIAMACHY to detect seasonal changes in the CO2 distribution. The amplitude of the seasonal cycle, peak to peak, observed by SCIAMACHY however, is overestimated by a factor of 2?3, which cannot be explained. The yearly means detected by SCIAMACHY are within 2% of those of the model with the mean difference between the CO2 distributions also approximately 2.0%. Additionally, analysis of the retrieved CO2 distributions reveals structure not evident in the model fields which correlates well with land classification type. From these comparisons, the overall precision and bias of the CO2 columns retrieved by the FSI algorithm are estimated to be close to 1.0% and <4.0% respectively

    Mode-coupling approach to non-Newtonian Hele-Shaw flow

    Full text link
    The Saffman-Taylor viscous fingering problem is investigated for the displacement of a non-Newtonian fluid by a Newtonian one in a radial Hele-Shaw cell. We execute a mode-coupling approach to the problem and examine the morphology of the fluid-fluid interface in the weak shear limit. A differential equation describing the early nonlinear evolution of the interface modes is derived in detail. Owing to vorticity arising from our modified Darcy's law, we introduce a vector potential for the velocity in contrast to the conventional scalar potential. Our analytical results address how mode-coupling dynamics relates to tip-splitting and side branching in both shear thinning and shear thickening cases. The development of non-Newtonian interfacial patterns in rectangular Hele-Shaw cells is also analyzed.Comment: 14 pages, 5 ps figures, Revtex4, accepted for publication in Phys. Rev.

    The lipids of the common house cricket,Acheta domesticus L. I. Lipid classes and fatty acid distribution

    Full text link
    The lipids of the common house cricket,Acheta domesticus L., have been examined with the following results. The fatty acids associated with the lipid extracts do not change significantly from the third through the eleventh week of the crickets’ postembryonic life. The major fatty acids are linoleic (30–40%), oleic (23–27%), palmitic (24–30%), and stearic acids (7–11%). There are smaller amounts of palmitoleic (3–4%), myristic (∼1%), and linolenic acids (<1%). The fatty acid composition of the cricket lipids reflects but is not identical to the fatty acids of the dietary lipids: linoleic (53%), oleic (24%), palmitic (15%), stearic (3%), myristic (2%), and linolenic acid (2%).The amount of triglycerides present in the crickets increases steadily from the second through the seventh or eighth week of postembryonic life, then drops sharply. Other lipid classes, such as hydrocarbons, simple esters, diglycerides, monoglycerides, sterols, and free fatty acids remain about constant. The composition of the fatty acids associated with the tri‐, di‐, and monoglycerides and the free fatty acid fraction are all about the same. The fatty acids associated with the simple esters are high in stearic acid.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142007/1/lipd0247.pd

    The Dynamics of Sustained Reentry in a Loop Model with Discrete Gap Junction Resistance

    Full text link
    Dynamics of reentry are studied in a one dimensional loop of model cardiac cells with discrete intercellular gap junction resistance (RR). Each cell is represented by a continuous cable with ionic current given by a modified Beeler-Reuter formulation. For RR below a limiting value, propagation is found to change from period-1 to quasi-periodic (QPQP) at a critical loop length (LcritL_{crit}) that decreases with RR. Quasi-periodic reentry exists from LcritL_{crit} to a minimum length (LminL_{min}) that is also shortening with RR. The decrease of Lcrit(R)L_{crit}(R) is not a simple scaling, but the bifurcation can still be predicted from the slope of the restitution curve giving the duration of the action potential as a function of the diastolic interval. However, the shape of the restitution curve changes with RR.Comment: 6 pages, 7 figure
    corecore