1,946 research outputs found

    Eye Colour, Aging, and Decoy Trap Bias in Lesser Scaup, Aythya affinis

    Get PDF
    Researchers routinely assume that samples of trapped or captured animals are representative of the overall population, though these assumptions are not always evaluated. We used decoy-trapped Lesser Scaup (Aythya affinis) to assess the reliability of classifying females as yearlings or adults from a distance, based on documented age-related eye-colour changes, and also to evaluate the presence of sex, condition and age biases in decoy trapping. We compared eye colour of trapped females to photographs of known-age females following a published procedure while females were (1) in traps (by using spotting scopes or binoculars) and (2) in-hand. Assuming in-hand age assessments were correct, we found that adults aged from a distance were frequently misclassified as yearlings, but yearlings were never misclassified as adults. Distance between observer and female, overall observation quality, and cloud cover did not influence age assignment success. A larger proportion of males was captured than observed during a survey of the local breeding population. We also found that decoy-trapped females had lower body mass and were more likely to be yearlings compared to pass- and jump-shot females from the same area. We conclude that female Lesser Scaup cannot be accurately aged from a distance using eye colour and concur with other researchers that possible sex, age and condition biases should be evaluated when using decoy traps

    The Dynamics of Sustained Reentry in a Loop Model with Discrete Gap Junction Resistance

    Full text link
    Dynamics of reentry are studied in a one dimensional loop of model cardiac cells with discrete intercellular gap junction resistance (RR). Each cell is represented by a continuous cable with ionic current given by a modified Beeler-Reuter formulation. For RR below a limiting value, propagation is found to change from period-1 to quasi-periodic (QPQP) at a critical loop length (LcritL_{crit}) that decreases with RR. Quasi-periodic reentry exists from LcritL_{crit} to a minimum length (LminL_{min}) that is also shortening with RR. The decrease of Lcrit(R)L_{crit}(R) is not a simple scaling, but the bifurcation can still be predicted from the slope of the restitution curve giving the duration of the action potential as a function of the diastolic interval. However, the shape of the restitution curve changes with RR.Comment: 6 pages, 7 figure

    Experimental constraints on a dark matter origin for the DAMA annual modulation effect

    Get PDF
    A claim for evidence of dark matter interactions in the DAMA experiment has been recently reinforced. We employ a new type of germanium detector to conclusively rule out a standard isothermal galactic halo of Weakly Interacting Massive Particles (WIMPs) as the explanation for the annual modulation effect leading to the claim. Bounds are similarly imposed on a suggestion that dark pseudoscalars mightlead to the effect. We describe the sensitivity to light dark matter particles achievable with our device, in particular to Next-to-Minimal Supersymmetric Model candidates.Comment: v4: introduces recent results from arXiv:0807.3279 and arXiv:0807.2926. Sensitivity to pseudoscalars is revised in light of the first. Discussion on the subject adde

    Absence of lattice strain anomalies at the electronic topological transition in zinc at high pressure

    Full text link
    High pressure structural distortions of the hexagonal close packed (hcp) element zinc have been a subject of controversy. Earlier experimental results and theory showed a large anomaly in lattice strain with compression in zinc at about 10 GPa which was explained theoretically by a change in Fermi surface topology. Later hydrostatic experiments showed no such anomaly, resulting in a discrepancy between theory and experiment. We have computed the compression and lattice strain of hcp zinc over a wide range of compressions using the linearized augmented plane wave (LAPW) method paying special attention to k-point convergence. We find that the behavior of the lattice strain is strongly dependent on k-point sampling, and with large k-point sets the previously computed anomaly in lattice parameters under compression disappears, in agreement with recent experiments.Comment: 9 pages, 6 figures, Phys. Rev. B (in press

    The lipids of the common house cricket,Acheta domesticus L. I. Lipid classes and fatty acid distribution

    Full text link
    The lipids of the common house cricket,Acheta domesticus L., have been examined with the following results. The fatty acids associated with the lipid extracts do not change significantly from the third through the eleventh week of the crickets’ postembryonic life. The major fatty acids are linoleic (30–40%), oleic (23–27%), palmitic (24–30%), and stearic acids (7–11%). There are smaller amounts of palmitoleic (3–4%), myristic (∌1%), and linolenic acids (<1%). The fatty acid composition of the cricket lipids reflects but is not identical to the fatty acids of the dietary lipids: linoleic (53%), oleic (24%), palmitic (15%), stearic (3%), myristic (2%), and linolenic acid (2%).The amount of triglycerides present in the crickets increases steadily from the second through the seventh or eighth week of postembryonic life, then drops sharply. Other lipid classes, such as hydrocarbons, simple esters, diglycerides, monoglycerides, sterols, and free fatty acids remain about constant. The composition of the fatty acids associated with the tri‐, di‐, and monoglycerides and the free fatty acid fraction are all about the same. The fatty acids associated with the simple esters are high in stearic acid.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142007/1/lipd0247.pd

    Simultaneous atmospheric measurements using two Fourier transform infrared spectrometers at the Polar Environment Atmospheric Research Laboratory during spring 2006, and comparisons with the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer

    No full text
    International audienceThe 2006 Canadian Arctic ACE (Atmospheric Chemistry Experiment) Validation Campaign collected measurements at the Polar Environment Atmospheric Research Laboratory (PEARL, 80.05° N, 86.42° W, 610 m above sea level) at Eureka, Canada from 17 February to 31 March 2006. Two of the ten instruments involved in the campaign, both Fourier transform spectrometers (FTSs), were operated simultaneously, recording atmospheric solar absorption spectra. The first instrument was an ABB Bomem DA8 high-resolution infrared FTS. The second instrument was the Portable Atmospheric Research Interferometric Spectrometer for the Infrared (PARIS-IR), the ground-based version of the satellite-borne FTS on the ACE satellite (ACE-FTS). From the measurements collected by these two ground-based instruments, total column densities of seven stratospheric trace gases (O3, HNO3, NO2, HCl, HF, NO, and ClONO2 were retrieved using the optimal estimation method and these results were compared. Since the two instruments sampled the same portions of atmosphere by synchronizing observations during the campaign, the biases in retrieved columns from the two spectrometers represent the instrumental differences. These differences were consistent with those seen in previous FTS intercomparison studies. Partial column results from the ground-based spectrometers were also compared with partial columns derived from ACE-FTS version 2.2 (including updates for O3, HDO and N2O5 profiles and the differences found were consistent with the other validation comparison studies for the ACE-FTS version 2.2 data products. Column densities of O3, HCl, ClONO2, and HNO3 from the three FTSs were normalized with respect to HF and used to probe the time evolution of the chemical constituents in the atmosphere over Eureka during spring 2006

    Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic aerosols

    Get PDF
    The meso-scale chemistry-transport model CHIMERE is used to assess our understanding of major sources and formation processes leading to a fairly large amount of organic aerosols – OA, including primary OA (POA) and secondary OA (SOA) – observed in Mexico City during the MILAGRO field project (March 2006). Chemical analyses of submicron aerosols from aerosol mass spectrometers (AMS) indicate that organic particles found in the Mexico City basin contain a large fraction of oxygenated organic species (OOA) which have strong correspondence with SOA, and that their production actively continues downwind of the city. The SOA formation is modeled here by the one-step oxidation of anthropogenic (i.e. aromatics, alkanes), biogenic (i.e. monoterpenes and isoprene), and biomass-burning SOA precursors and their partitioning into both organic and aqueous phases. Conservative assumptions are made for uncertain parameters to maximize the amount of SOA produced by the model. The near-surface model evaluation shows that predicted OA correlates reasonably well with measurements during the campaign, however it remains a factor of 2 lower than the measured total OA. Fairly good agreement is found between predicted and observed POA within the city suggesting that anthropogenic and biomass burning emissions are reasonably captured. Consistent with previous studies in Mexico City, large discrepancies are encountered for SOA, with a factor of 2–10 model underestimate. When only anthropogenic SOA precursors were considered, the model was able to reproduce within a factor of two the sharp increase in OOA concentrations during the late morning at both urban and near-urban locations but the discrepancy increases rapidly later in the day, consistent with previous results, and is especially obvious when the column-integrated SOA mass is considered instead of the surface concentration. The increase in the missing SOA mass in the afternoon coincides with the sharp drop in POA suggesting a tendency of the model to excessively evaporate the freshly formed SOA. Predicted SOA concentrations in our base case were extremely low when photochemistry was not active, especially overnight, as the SOA formed in the previous day was mostly quickly advected away from the basin. These nighttime discrepancies were not significantly reduced when greatly enhanced partitioning to the aerosol phase was assumed. Model sensitivity results suggest that observed nighttime OOA concentrations are strongly influenced by a regional background SOA (~1.5 ÎŒg/m&lt;sup&gt;3&lt;/sup&gt;) of biogenic origin which is transported from the coastal mountain ranges into the Mexico City basin. The presence of biogenic SOA in Mexico City was confirmed by SOA tracer-derived estimates that have reported 1.14 (&amp;plusmn;0.22) ÎŒg/m&lt;sup&gt;3&lt;/sup&gt; of biogenic SOA at T0, and 1.35 (&amp;plusmn;0.24) ÎŒg/m&lt;sup&gt;3&lt;/sup&gt; at T1, which are of the same order as the model. Consistent with other recent studies, we find that biogenic SOA does not appear to be underestimated significantly by traditional models, in strong contrast to what is observed for anthropogenic pollution. The relative contribution of biogenic SOA to predicted monthly mean SOA levels (traditional approach) is estimated to be more than 30% within the city and up to 65% at the regional scale which may help explain the significant amount of modern carbon in the aerosols inside the city during low biomass burning periods. The anthropogenic emissions of isoprene and its nighttime oxidation by NO&lt;sub&gt;3&lt;/sub&gt; were also found to enhance the SOA mean concentrations within the city by an additional 15%. Our results confirm the large underestimation of the SOA production by traditional models in polluted regions (estimated as 10–20 tons within the Mexico City metropolitan area during the daily peak), and emphasize for the first time the role of biogenic precursors in this region, indicating that they cannot be neglected in urban modeling studies

    Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector

    Get PDF
    We report on several features present in the energy spectrum from an ultra low-noise germanium detector operated at 2,100 m.w.e. By implementing a new technique able to reject surface events, a number of cosmogenic peaks can be observed for the first time. We discuss several possible causes for an irreducible excess of bulk-like events below 3 keVee, including a dark matter candidate common to the DAMA/LIBRA annual modulation effect, the hint of a signal in CDMS, and phenomenological predictions. Improved constraints are placed on a cosmological origin for the DAMA/LIBRA effect.Comment: 4 pages, 4 figures. v2: submitted version. Minimal changes in wording, one reference adde
    • 

    corecore