452 research outputs found
Professional Organizations and Healthcare Industry Support: Ethical Conflict?
A good deal of attention has been recently focused on the presumed advertising excesses of the healthcare industry in its promotion techniques to healthcare professionals, whether through offering gratuities such as gifts, honoraria, or travel support2-6 or through deception. Two basic concerns have been expressed: Does the acceptance of gratuities bias the recipient, tainting his or her responsibilities as the patient's agent? Does acceptance of the gratuity by the healthcare professional contribute to the high cost of healthcare products? The California Society of Hospital Pharmacists was recently asked by its members to formulate a policy for an appropriate relationship between the Society and the healthcare industry, addressing these concerns. In formulating its policy, it became clear that the Society depended on healthcare industry support, gathered through journal advertising, fees for booths at its various educational events, and grants for speaker
Stratigraphy, Sequence, and Crater Populations of Lunar Impact Basins from Lunar Orbiter Laser Altimeter (LOLA) Data: Implications for the Late Heavy Bombardment
New measurements of the topography of the Moon from the Lunar Orbiter Laser Altimeter (LOLA)[1] provide an excellent base-map for analyzing the large crater population (D.20 km)of the lunar surface [2, 3]. We have recently used this data to calculate crater size-frequency distributions (CSFD) for 30 lunar impact basins, which have implications for their stratigraphy and sequence. These data provide an avenue for assessing the timing of the transitions between distinct crater populations characteristic of ancient and young lunar terrains, which has been linked to the late heavy bombardment (LHB). We also use LOLA data to re-examine relative stratigraphic relationships between key lunar basins
Recommended from our members
Patient photographs taken without instructions are of sufficient quality for clinical decision-making in teledermatology
Cold and COVID: Recurrent Pernio during the COVID-19 Pandemic
Pernio is a commonly reported cutaneous manifestation of SARS-CoV-2 infection.(1) Our international registry of COVID-19 dermatologic manifestations has collected 1,176 total cases of COVID-19 skin manifestations, including 619 cases of pernio in suspected or confirmed COVID-19 patients.(1) Most patients with new-onset pernio were entered into the registry after the first pandemic wave (79% in March-May 2020). Starting in September 2020, the registry received reports of a subset of these patients who developed recurrent pernio in the following months
Localized precipitation and runoff on Mars
We use the Mars Regional Atmospheric Modeling System (MRAMS) to simulate lake
storms on Mars, finding that intense localized precipitation will occur for
lake size >=10^3 km^2. Mars has a low-density atmosphere, so deep convection
can be triggered by small amounts of latent heat release. In our reference
simulation, the buoyant plume lifts vapor above condensation level, forming a
20km-high optically-thick cloud. Ice grains grow to 200 microns radius and fall
near (or in) the lake at mean rates up to 1.5 mm/hr water equivalent (maximum
rates up to 6 mm/hr water equivalent). Because atmospheric temperatures outside
the surface layer are always well below 273K, supersaturation and condensation
begin at low altitudes above lakes on Mars. In contrast to Earth lake-effect
storms, lake storms on Mars involve continuous precipitation, and their
vertical velocities and plume heights exceed those of tropical thunderstorms on
Earth. Convection does not reach above the planetary boundary layer for lakes
O(10^2) mbar. Instead, vapor is
advected downwind with little cloud formation. Precipitation occurs as snow,
and the daytime radiative forcing at the land surface due to plume vapor and
storm clouds is too small to melt snow directly (<+10 W/m^2). However, if
orbital conditions are favorable, then the snow may be seasonally unstable to
melting and produce runoff to form channels. We calculate the probability of
melting by running thermal models over all possible orbital conditions and
weighting their outcomes by probabilities given by Laskar et al., 2004. We
determine that for an equatorial vapor source, sunlight 15% fainter than at
present, and snowpack with albedo 0.28 (0.35), melting may occur with 4%(0.1%)
probability. This rises to 56%(12%) if the ancient greenhouse effect was
modestly (6K) greater than today.Comment: Submitted to JGR Planet
The Age of Lunar South Circumpolar Craters Haworth, Shoemaker, Faustini, and Shackleton: Implications for Regional Geology, Surface Processes, and Volatile Sequestration
The interiors of the lunar south circumpolar craters Haworth, Shoemaker, Faustini, and Shackleton contain permanently shadowed regions (PSRs) and have been interpreted to contain sequestered volatiles including water ice. Altimetry data from the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter provide a new means of examining the permanently shadowed interiors of these craters in unprecedented detail. In this study, we used extremely high-resolution gridded LOLA data of Haworth, Shoemaker, Faustini, and Shackleton to determine the size-frequency distributions and the spatial density of craters superposing their rims, inner slopes, and floors. Based on their population of superposed D greater than or equal to 2 km craters, Haworth, Shoemaker, and Faustini have pre-Nectarian formation ages. Shackleton is interpreted as having a Late Imbrian age on the basis of craters with diameter D greater than or equal to 0.5 km superposed on its rim. The local density of craters with sub-km diameters across our study area is strongly dependent on slope; because of its steep interior slopes, the lifetime of craters on the interior of Shackleton is limited. The slope-dependence of the small crater population implies that the population in this size range is controlled primarily by the rate at which craters are destroyed. This is consistent with the hypothesis that crater removal and resurfacing is a result of slopedependent processes such as diffusive mass wasting and seismic shaking, linked to micrometeorite and meteorite bombardment. Epithermal neutron flux data and UV albedo data show that these circumpolar PSRs, particularly Shoemaker, may have approximately 1-2% water ice by mass in their highly porous surface regolith, and that Shoemaker may have approximately 5% or more water ice by mass in the near subsurface. The ancient formation ages of Shoemaker, Faustini and Haworth, and the Late Imbrian (approximately 3.5 Ga) crater retention ages of their floors suggests that any water ice that might have been deposited in their permanently shadowed areas was insufficient to modify the superposed crater population since that time
Topographic Rise in the Northern Smooth Plains of Mercury: Characteristics from Messenger Image and Altimetry Data and Candidate Modes of Origin
MESSENGER observations from orbit around Mercury have revealed that a large contiguous area of smooth plains occupies much of the high northern latitudes and covers an area in excess of approx.6% of the surface of the planet [1] (Fig. 1). Smooth surface morphology, embayment relationships, color data, candidate flow fronts, and a population of partly to wholly buried craters provide evidence for the volcanic origin of these plains and their emplacement in a flood lava mode to depths at least locally in excess of 1 km. The age of these plains is similar to that of plains associated with and postdating the Caloris impact basin, confirming that volcanism was a globally extensive process in the post-heavy bombardment history of Mercury [1]. No specific effusive vent structures, constructional volcanic edifices, or lava distributary features (leveed flow fronts or sinuous rilles) have been identified in the contiguous plains, although vent structures and evidence of high-effusion-rate flood eruptions are seen in adjacent areas [1]. Subsequent to the identification and mapping of the extensive north polar smooth plains, data from the Mercury Laser Altimeter (MLA) on MESSENGER revealed the presence of a broad topographic rise in the northern smooth plains that is ~1,000 km across and rises more than 1.5 km above the surrounding smooth plains [2] (Fig. 2). The purpose of this contribution is to characterize the northern plains rise and to outline a range of hypotheses for its origin
Anthropogenic Noise Changes Arthropod Abundances
Anthropogenic noise is a widespread and growing form of sensory pollution associated with the expansion of human infrastructure. One specific source of constant and intense noise is that produced by compressors used for the extraction and transportation of natural gas. Terrestrial arthropods play a central role in many ecosystems, and given that numerous species rely upon airborne sounds and substrate-borne vibrations in their life histories, we predicted that increased background sound levels or the presence of compressor noise would influence their distributions. In the second largest natural gas field in the United States (San Juan Basin, New Mexico, USA), we assessed differences in the abundances of terrestrial arthropod families and community structure as a function of compressor noise and background sound level. Using pitfall traps, we simultaneously sampled five sites adjacent to well pads that possessed operating compressors, and five alternate, quieter well pad sites that lacked compressors, but were otherwise similar. We found a negative association between sites with compressor noise or higher levels of background sound and the abundance of five arthropod families and one genus, a positive relationship between loud sites and the abundance of one family, and no relationship between noise level or compressor presence and abundance for six families and two genera. Despite these changes, we found no evidence of community turnover as a function of background sound level or site type (compressor and noncompressor). Our results indicate that anthropogenic noise differentially affects the abundances of some arthropod families. These preliminary findings point to a need to determine the direct and indirect mechanisms driving these observed responses. Given the diverse and important ecological functions provided by arthropods, changes in abundances could have ecological implications. Therefore, we recommend the consideration of arthropods in the environmental assessment of noise-producing infrastructure
- …