2 research outputs found

    N1-(3-(Trifluoromethyl)Phenyl) Isophthalamide Derivatives as Promising Inhibitors of Vascular Endothelial Growth Factor Receptor: Pharmacophore-Based Design, Docking, and MM-PBSA/MM-GBSA Binding Energy Estimation

    Get PDF
    Targeting protein kinases is a common approach for cancer treatment. In this study, a series of novel terephthalic and isophthalic derivatives were constructed as potential type 2 protein kinase inhibitors adapting pharmacophore features of approved anticancer drugs of this class. Inhibitory activity of designed structures was studied in silico against various cancer-related protein kinases and compared with that of known inhibitors. Obtained docking scores, MM-PBSA/MM-GBSA binding energy, and RF-Score-VS affinities suggest that N1-(3-(trifluoromethyl) phenyl) isophthalamide could be considered as promising scaffold for the development of novel protein kinase inhibitors which are able to target the inactive conformation of vascular endothelial growth factor receptor

    Synthesis, In Vitro and In Silico Anticancer Activity of New 4-Methylbenzamide Derivatives Containing 2,6-Substituted Purines as Potential Protein Kinases Inhibitors

    No full text
    A novel class of potential protein kinase inhibitors 7–16 was synthesized in high yields using various substituted purines. The most promising compounds, 7 and 10, exhibited inhibitory activity against seven cancer cell lines. The IC50 values for compounds 7 and 10 were 2.27 and 2.53 μM for K562 cells, 1.42 and 1.52 μM for HL-60 cells, and 4.56 and 24.77 μM for OKP-GS cells, respectively. In addition, compounds 7 and 10 dose-dependently induced the apoptosis and cell cycle arrest at G2/M phase, preventing the cell division of OKP-GS cells. Compounds 7, 9, and 10 showed 36–45% inhibitory activity against PDGFRα and PDGFRβ at the concentration of 1 μM. Molecular modeling experiments showed that obtained compounds could bind to PDGFRα as either type 1 (compound 7, ATP-competitive) or type 2 (compound 10, allosteric) inhibitors, depending on the substituent in the amide part of the molecule
    corecore