28 research outputs found

    Pharmacological characterisation of arthritis induced by Bothrops jararaca venom in rabbits: a positive cross talk between bradykinin, nitric oxide and prostaglandin E2.

    Get PDF
    BACKGROUND: Our previous results showed that nitric oxide (NO) and bradykinin (BK) mediate the arthritis induced by Bothrops jararaca venom (BjV) in rabbits. In this study, we investigated the contribution of each receptor of BK as well as the inter-relationship between NO and eicosanoids in BjV-induced arthritis. METHODS: The arthritis was induced in rabbits with 16 microg of BjV injected intra-articularly. Prostaglandin E2 (PGE2), thromboxane B2 (TxB2), leukotriene B4 (LTB4) (radioimmunoassay) and nitrite/nitrate concentrations (NO2/NO3) (Griess reaction) were evaluated in the synovial fluid 4 h later. The animals were prior treated with NO synthase inhibitor (L-NAME; 20 mg/kg/day for 14 days), the B2 antagonist of BK (HOE-140) and the B1 antagonist of BK (des-Arg9[Leu8]-bradykinin), both at a dose of 0.3mg/kg, 30 min prior to the venom injection. RESULTS: Data show that L-NAME and HOE-140 treatment were equally able to reduce PGE2 and NO2/NO3 levels without interfering with TxB2 and LTB4 production. On the contrary, the B1 antagonist of BK inhibited TxB2 and LTB4 production, and did not alter PGE2 and NO metabolites levels in the inflamed joint. DISCUSSIONS: The results presented clarify the contribution of the kinin system, mainly through the B2 receptor, to the local inflammatory response induced by BjV, as well as its positive interaction with PGE2 and NO production

    Short-chain fatty acids stimulate the migration of neutrophils to inflammatory sites

    Get PDF
    A B S T R A C T SCFAs (short-chain fatty acids) are produced by anaerobic bacterial fermentation. Increased concentrations of these fatty acids are observed in inflammatory conditions, such as periodontal disease, and at sites of anaerobic infection. In the present study, the effect of the SCFAs acetate, propionate and butyrate on neutrophil chemotaxis and migration was investigated. Experiments were carried out in rats and in vitro. The following parameters were measured: rolling, adherence, expression of adhesion molecules in neutrophils (L-selectin and β2 integrin), transmigration, air pouch influx of neutrophils and production of cytokines [CINC-2αβ (cytokine-induced neutrophil chemoattractant-2αβ), IL-1β (interleukin-1β), MIP-1α (macrophage inflammatory protein-1α) and TNF-α (tumour necrosis factor-α)]. SCFAs induced in vivo neutrophil migration and increased the release of CINC-2αβ into the air pouch. These fatty acids increased the number of rolling and adhered cells as evaluated by intravital microscopy. SCFA treatment increased L-selectin expression on the neutrophil surface and L-selectin mRNA levels, but had no effect on the expression of β2 integrin. Propionate and butyrate also increased in vitro transmigration of neutrophils. These results indicate that SCFAs produced by anaerobic bacteria raise neutrophil migration through increased L-selectin expression on neutrophils and CINC-2αβ release

    Annexin A1 regulates neutrophil clearance by macrophages in the mouse bone marrow

    No full text
    Under homeostatic conditions, a proportion of senescent CXCR4(hi) neutrophils home from the circulation back to the bone marrow, where they are phagocytosed by bone marrow macrophages. In this study, we have identified an unexpected role for the anti-inflammatory molecule annexin A1 (AnxA1) as a critical regulator of this process. We first observed that AnxA1(-/-) mice have significantly increased neutrophil numbers in their bone marrow while having normal levels of GM and G colony-forming units, monocytes, and macrophages. Although AnxA1(-/-) mice have more neutrophils in the bone marrow, a greater proportion of these cells are senescent, as determined by their higher levels of CXCR4 expression and annexin V binding. Consequently, bone marrow neutrophils from AnxA1(-/-) mice exhibit a reduced migratory capacity in vitro. Studies conducted in vitro also show that expression of AnxA1 is required for bone marrow macrophages, but not peritoneal macrophages, to phagocytose apoptotic neutrophils. Moreover, in vivo experiments indicate a defect in clearance of wild-type neutrophils in the bone marrow of AnxA1(-/-) mice. Thus, we conclude that expression of AnxA1 by resident macrophages is a critical determinant for neutrophil clearance in the bone marrow.-Dalli, J., Jones, C. P., Cavalcanti, D. M., Farsky, S. H., Perretti, M., Rankin, S. M. Annexin A1 regulates neutrophil clearance by macrophages in the mouse bone marrow. FASEB J. 26, 387-396 (2012). www.fasebj.orgWellcome TrustWellcome Trust [086867/Z/08, 0851851/Z/08]William Harvey Research FoundationWilliam Harvey Research FoundationNational Institute for Health Research (UK)National Institute for Health Research (UK

    Role of Translocator 18 KDa Ligands in the Activation of Leukotriene B4 Activated G-Protein Coupled Receptor and Toll Like Receptor-4 Pathways in Neutrophils

    No full text
    TSPO (Translocator 18 KDa; tryptophan-rich sensory protein oxygen sensor) is a constitutive outer mitochondrial membrane protein overexpressed in inflammatory cells during local or systemic processes. Despite its expression is characterized, role of TSPO in inflammation remains elusive. For this study, we investigated the role of TSPO ligands on neutrophil functions elicited by two different inflammatory pathways. Peritoneal neutrophils were isolated from male Balb-C mice, treated with TSPO ligand diazepam, Ro5-4864 or PK11195 (1,100 or 1000 nM; 2 h) and further stimulated with lipopolysaccharide from Escherichia coli (LPS), a binding for Toll-Like Receptor-4 (TLR4), or leukotriene B4 (LTB4), a G-protein coupled receptor (GPCR) ligand. LPS treatment did not lead to overexpression of TSPO on neutrophils, and pre-treatment with any TSPO ligand did not alter cytokine expression, adhesion molecule expression, or the production of reactive oxygen and nitrogen species caused by LPS stimulation. Conversely, all TSPO ligands impaired LTB4’s actions, as visualized by reductions in L-selectin shedding, β2 integrin overexpression, neutrophil chemotaxis, and actin filament assembly. TSPO ligands showed distinct intracellular effects on LTB4-induced neutrophil locomotion, with diazepam enhancing cofilin but not modifying Arp2/3 expression, and Ro5-4864 and PK11195 reducing both cofilin and Arp2/3 expression. Taken together, our data exclude a direct role of TSPO ligands in TLR4-elicited pathways, and indicate that TSPO activation inhibits GPCR inflammatory pathways in neutrophils, with a relevant role in neutrophil influx into inflammatory sites

    Lopap: A non-inflammatory and cytoprotective molecule in neutrophils and endothelial cells

    No full text
    Lopap (Lonomia obliqua prothrombin activator protease) is a member of the lipocalin family isolated from the extract of L obliqua bristles. Lopap displays serine protease-like activities, including coagulation disturbance, cytokine secretion and antiapoptotic activity in human cultured endothelial cells. Here, we have investigated the effects of the recombinant protein (rLopap) on the inflammatory and apoptotic processes of neutrophils and endothelial cells from male Wistar rats. We found that rLopap did not induce in vivo leukocyte-endothelial interactions in the microvasculature, initial steps of leukocyte recruitment during inflammation. Incubation of rLopap with neutrophils or endothelial cells prevented apoptosis evoked by serum deprivation and induced nitric oxide (NO) production in both cell types, and increased the expression of ICAM-1 by endothelial cells. Simultaneous incubation of endothelial cells or neutrophils with rLopap and N(omega)-nitro-L-arginine methyl ester (L-NAME), a non-specific inhibitor of NO synthases, inhibited NO production and impaired the protection on apoptosis. Differently, incubation of endothelial cells with monoclonal antibody anti ICAM-1 did not change the protection on apoptosis evoked by rLopap. Together, these results indicate that rLopap does not display inflammatory properties in vivo but inhibits apoptosis of neutrophils and endothelial cells depending, at least in part, on NO production. (C) 2009 Elsevier Ltd. All rights reserved.FAPESP[06/58643-0]FAPESP[05/59739-9

    Bioactivity of nitrolinoleate: effects on adhesion molecules and CD40-CD40L system

    No full text
    The vascular effects of nitrolinoleate (LNO(2)), an endogenous product of linoleic acid (LA) nitration by nitric oxide-derived species and a potential nitrosating agent, were investigated on rat endothelial-leukocyte interactions. Confocal microscopy analysis demonstrated that LNO(2) was capable to deliver free radical nitric oxide ((center dot)NO) into cells, 5 min after its administration to cultured cells, with a peak of liberation at 30 min. THP-1 monocytes incubated with LNO(2) for 5 min presented nitrosation of CD40, leading to its inactivation. Other anti-inflammatory actions of LNO(2) were observed in vivo by intravital microscopy assays. LNO(2) decreased the number of adhered leukocytes in postcapillary venules of the mesentery network. In addition to this, LNO(2) reduced mRNA and protein expression of 2-integrin in circulating leukocytes, as well as VCAM-1 in endothelial cells isolated from postcapillary venules, confirming its antiadhesive effects on both cell types. Moreover, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a nitric oxide scavenger, partially abolished the inhibitory action of LNO(2) on leukocyte-endothelium interaction, suggesting that the antiadhesion effects of LNO(2) involve a dual role in leukocyte adhesion, acting as a nitric oxide donor as well as through nitric oxide-independent mechanisms. In conclusion, LNO(2) inhibited adhesion molecules expression and promoted (center dot)NO inactivation of the CD40-CD40L system, both important processes of the inflammatory response. (C) 2010 Elsevier Inc. All rights reserved.Fundacao de Apoio a Pesquisa do Estado de Sao Paulo (FAPESP)CNPq Conselho Nacional de Desenvolvimento Cientifico e Tecnologico/Instituto do Milenio-Redoxoma (INCT

    In vivo blockade of Ca(+2)-dependent nitric oxide synthases impairs expressions of L-selectin and PECAM-1

    No full text
    Interactions of leukocytes with endothelium play a role for the immune system modulated by endogenous agents, such as glucocorticoids and nitric oxide (NO). Glucocorticoids inhibit leukocyte-endothelial interactions whereas the role of NO is still controversial. In this study, the activity of Ca(+2)-dependent nitric oxide synthases was in vivo blocked in male Wistar rats by given L-NAME, 20 mg kg(-1) for 14 days dissolved in drinking water and expression of adhesion molecules involved in leukocyte-endothelial interactions was investigated. Expressions of L-selectin and PECAM-I in peripheral leukocytes and PECAM-1 in endothelial cells were reduced by L-NAME treatment. Only L-selectin expression was controlled at transcriptional levels. These effects were not dependent on endogenous glucocorticoids, as corticosterone levels were not altered in NAME-treated rats. Our results show that NO, produced at physiological levels, controls expression of constitutive adhesion molecules expressions in cell membranes by different mechanisms of action. Published by Elsevier Inc.FAPESP[05/60329-0]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)CAPE
    corecore