17 research outputs found

    Semi-groupe de Lie associé à un cône symétrique

    Get PDF
    Volcanic arcs are the surface expression of magmatic systems that result from the subduction of mostly oceanic lithosphere at convergent plate boundaries. Arcs with a submarine component include intraoceanic arcs and island arcs that span almost 22,000 km on Earth\u27s surface, the vast majority of which are located in the Pacific region. Hydrothermal systems hosted by submarine arc volcanoes commonly contain a large component of magmatic fluid. This magmatic-hydrothermal signature, coupled with the shallow water depths of arc volcanoes and their high volatile contents, strongly influences the chemistry of the fluids and resulting mineralization and likely has important consequences for the biota associated with these systems. The high metal contents and very acidic fluids in these hydrothermal systems are thought to be important analogs to numerous porphyry copper and epithermal gold deposits mined today on land

    Correlation of Elastic Moduli and Serpentine Content in Ultramafic Rocks

    No full text
    Understanding the physical properties of ultramafic rocks is important for evaluating a wide variety of petrologic models of the oceanic lithosphere, particularly upper mantle and lower crust. Hydration of oceanic peridotites results in increasing serpentine content, which affects lithospheric physical properties and the global bio/geochemical cycles of various elements. In understanding tectonic, magmatic, and metamorphic history of the oceanic crust, interpreting seismic velocities, rock composition, and elastic moduli are of fundamental importance. In this study, we show that as serpentine content increases, density decreases linearly with a slope of 7.85. Porosity of the samples does not show any systematic correlation with serpentine content, as it is more strongly affected by local weathering and erosional processes. We also correlate increase in serpentine content with a linear decline in shear, bulk, and Young’s moduli with slopes of 0.48, 0.77, and 0.45, respectively. Our results show that increase in serpentine content of mantle wedge and forearc mantle contributes to their brittle behavior and result in break-offs, obduction, and overthrusting. Therefore, serpentine content strongly affects tectonic processes at subduction zones, particularly serpentinization may be responsible for formation of weak fault zones. Also, serpentinization of fresh oceanic peridotite in slow and ultra-slow spreading ridges may be responsible for observed discontinuities in thin crust

    A Vent-Field-Scale Model of the East Pacific Rise 9°50'N Magma-Hydrothermal System

    No full text
    This paper describes a two-limb single-pass modeling approach constrained by vent temperature, heat flow, vent geochemistry, active-source seismology, and seismically inferred circulation geometry to provide first-order constraints on crustal permeability, conductive boundary layer thickness, fluid residence times, and magma replenishment rates for the magma-hydrothermal system at the East Pacific Rise (EPR) near 9°50'N. Geochemical data from black smokers and nearby diffuse-flow patches, as well as an estimate of heat flow partitioning, suggest that nearly 90% of the heat output stems from heat supplied by the subaxial magma chamber, even though almost 90% of that output appears as diffuse flow at the seafloor. Estimates of magma replenishment rates are consistent with the evolution of lava chemistry over the eruption cycle between 1991–1992 and 2005–2006. If the recharge surface area is 105 m2, a one-dimensional model of hydrothermal recharge using EPR 9°50'N parameters gives rise to rapid sealing as a result of anhydrite precipitation; however, if the area of recharge widens at depth to ~ 106 m2, sealing by anhydrite precipitation may not significantly affect hydrothermal circulation

    Critical role of caldera collapse in the formation of seafloor mineralization: The case of Brothers volcano

    Get PDF
    Hydrothermal systems hosted by submarine arc volcanoes commonly include a large component of magmatic fluid. The high Cu-Au contents and strongly acidic fluids in these systems are similar to those that formed in the shallow parts of some porphyry copper and epithermal gold deposits mined today on land. Two main types of hydrothermal systems occur along the submarine portion of the Kermadec arc (offshore New Zealand): magmatically influenced and seawater-dominated systems. Brothers volcano hosts both types. Here, we report results from a series of drill holes cored by the International Ocean Discovery Program into these two types of hydrothermal systems. We show that the extent of hydrothermal alteration of the host dacitic volcaniclastics and lavas reflects primary lithological porosity and contrasting spatial and temporal contributions of magmatic fluid, hydrothermal fluid, and seawater. We present a two-step model that links the changes in hydrothermal fluid regime to the evolution of the volcano caldera. Initial hydrothermal activity, prior to caldera formation, was dominated by magmatic gases and hypersaline brines. The former mixed with seawater as they ascended toward the seafloor, and the latter remained sequestered in the subsurface. Following caldera collapse, seawater infiltrated the volcano through fault-controlled permeability, interacted with wall rock and the segregated brines, and transported associated metals toward the seafloor and formed Cu-Zn-Au-rich chimneys on the caldera walls and rim, a process continuing to the present day. This two-step process may be common in submarine arc caldera volcanoes that host volcanogenic massive sulfide deposits, and it is particularly efficient at focusing mineralization at, or near, the seafloor

    Broadening the phenotypic spectrum of pathogenic LARP7 variants: two cases with intellectual disability, variable growth retardation and distinct facial features

    No full text
    Contains fulltext : 168335.pdf (Publisher’s version ) (Closed access)In 2012 Alazami et al. described a novel syndromic cause of primordial dwarfism with distinct facial features and severe intellectual disability. A homozygous frameshift mutation in LARP7, a chaperone of the noncoding RNA 7SK, was discovered in patients from a single consanguineous Saudi family. To date, only one additional patient has recently been described. To further delineate the phenotype associated with LARP7 mutations, we report two additional cases originating from the Netherlands and Saudi Arabia. The patients presented with intellectual disability, distinct facial features and variable short stature. We describe their clinical features and compare them with the previously reported patients. Both cases were identified by diagnostic whole-exome sequencing, which detected two homozygous pathogenic LARP7 variants: c.1091_1094delCGGT in the Dutch case and c.1045_1051dupAAGGATA in the Saudi Arabian case. Both variants are leading to frameshifts with introduction of premature stop codons, suggesting that loss of function is likely the disease mechanism. This study is an independent confirmation of the syndrome due to LARP7 depletion. Our cases broaden the associated clinical features of the syndrome and contribute to the delineation of the phenotypic spectrum of LARP7 mutations
    corecore