774 research outputs found

    Sagittarius dwarf spheroidal galaxy observed by H.E.S.S

    Full text link
    Dwarf spheroidal galaxies are characterized by a large measured mass-to-light ratio and are not expected to be the site of high-luminosity non-thermal high-energy gamma-ray emissions. Therefore they are among the most promising candidates for indirect searches of dark matter particle annihilation signals in gamma rays. The Sagittarius dwarf spheroidal galaxy has been regularly observed by the High Energy Stereoscopic System (H.E.S.S.) of Cherenkov telescopes for more than 90 hours, searching for TeV gamma-ray emission from annihilation of dark matter particles. In absence of a significant signal, new constraints on the annihilation crosssection of the dark matter particles applicable for Majorana Weakly Interacting Massive Particles (WIMPs) are derived.Comment: In Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro (Brazil

    SWITCHING FROM STATIN MONOTHERAPY TO EZETIMIBE/SIMVASTATIN OR ROSUVASTATIN MODIFIES THE RELATIONSHIPS BETWEEN APOLIPOPROTEIN B, LDL CHOLESTEROL, ANC NON-HDL CHOLETEROL IN PATIENTS AT HIGH RISK OF CORONARY DISEASE

    Get PDF
    OBJECTIVE: To evaluate relationships between apolipoprotein B (Apo B), LDL cholesterol (LDL-C), and non-HDL-C in high-risk patients treated with lipid-lowering therapy. DESIGN AND METHODS: This post-hoc analysis calculated LDL-C and non-HDL-C levels corresponding to an Apo B of 0.9 g/L following treatment with 1) statin monotherapy (baseline) and 2) ezetimibe/simvastatin 10/20mg or rosuvastatin 10mg (study end). The percentages of patients reaching LDL-C, non-HDL-C, and Apo B targets were calculated at study end. RESULTS: After switching to ezetimibe/simvastatin or rosuvastatin, the LDL-C and non-HDL-C corresponding to Apo B=0.9 g/L were closer to the more aggressive LDL-C and non-HDL-C goals (1.81 and 2.59 mmol/L, respectively). Only slightly >50% of the patients who reached minimum recommended LDL-C or non-HDL-C at study end also had an Apo B level <0.9 g/L with both treatments. CONCLUSION: The use of Apo B for monitoring the efficacy of lipid-altering therapy would likely lead to more stringent criteria for lipid lowering

    Direct Constraints on Minimal Supersymmetry from Fermi-LAT Observations of the Dwarf Galaxy Segue 1

    Full text link
    The dwarf galaxy Segue 1 is one of the most promising targets for the indirect detection of dark matter. Here we examine what constraints 9 months of Fermi-LAT gamma-ray observations of Segue 1 place upon the Constrained Minimal Supersymmetric Standard Model (CMSSM), with the lightest neutralino as the dark matter particle. We use nested sampling to explore the CMSSM parameter space, simultaneously fitting other relevant constraints from accelerator bounds, the relic density, electroweak precision observables, the anomalous magnetic moment of the muon and B-physics. We include spectral and spatial fits to the Fermi observations, a full treatment of the instrumental response and its related uncertainty, and detailed background models. We also perform an extrapolation to 5 years of observations, assuming no signal is observed from Segue 1 in that time. Results marginally disfavour models with low neutralino masses and high annihilation cross-sections. Virtually all of these models are however already disfavoured by existing experimental or relic density constraints.Comment: 22 pages, 5 figures; added extra scans with extreme halo parameters, expanded introduction and discussion in response to referee's comment

    Progress in Monte Carlo design and optimization of the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) will be an instrument covering a wide energy range in very-high-energy (VHE) gamma rays. CTA will include several types of telescopes, in order to optimize the performance over the whole energy range. Both large-scale Monte Carlo (MC) simulations of CTA super-sets (including many different possible CTA layouts as sub-sets) and smaller-scale simulations dedicated to individual aspects were carried out and are on-going. We summarize results of the prior round of large-scale simulations, show where the design has now evolved beyond the conservative assumptions of the prior round and present first results from the on-going new round of MC simulations.Comment: 4 pages, 5 figures. In Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at arXiv:1307.223

    Efficacy and Safety of Ezetimibe Added to Atorvastatin Versus Atorvastatin Uptitration or Switching to Rosuvastatin in Patients With Primary Hypercholesterolemia

    Get PDF
    Hypercholesterolemic patients (n = 1,547) at high atherosclerotic cardiovascular disease risk with low-density lipoprotein cholesterol (LDL-C) levels 65100 and 64160 mg/dl while treated with atorvastatin 10 mg/day entered a multicenter, randomized, double-blind, active-controlled, clinical trial using two 6-week study periods. Period I compared the efficacy/safety of (1) adding ezetimibe 10 mg (ezetimibe) to stable atorvastatin 10 mg, (2) doubling atorvastatin to 20 mg, or (3) switching to rosuvastatin 10 mg. Subjects in the latter 2 groups who persisted with elevated LDL-C levels ( 65100 and 64160 mg/dl) after period I, entered period II; subjects on atorvastatin 20 mg had ezetimibe added to their atorvastatin 20 mg, or uptitrated their atorvastatin to 40 mg; subjects on rosuvastatin 10 mg switched to atorvastatin 20 mg plus ezetimibe or uptitrated their rosuvastatin to 20 mg. Some subjects on atorvastatin 10 mg plus ezetimibe continued the same treatment into period II. At the end of period I, ezetimibe plus atorvastatin 10 mg reduced LDL-C significantly more than atorvastatin 20 mg or rosuvastatin 10 mg (22.2% vs 9.5% or 13.0%, respectively, p <0.001). At the end of period II, ezetimibe plus atorvastatin 20 mg reduced LDL-C significantly more than atorvastatin 40 mg (17.4% vs 6.9%, p <0.001); switching from rosuvastatin 10 mg to ezetimibe plus atorvastatin 20 mg reduced LDL-C significantly more than uptitrating to rosuvastatin 20 mg (17.1% vs 7.5%, p <0.001). Relative to comparative treatments, ezetimibe added to atorvastatin 10 mg (period I) or atorvastatin 20 mg (period II) produced significantly greater percent attainment of LDL-C targets <100 or <70 mg/dl, and significantly greater percent reductions in total cholesterol, non-high-density lipoprotein cholesterol, most lipid and lipoprotein ratios, and apolipoprotein B (except ezetimibe plus atorvastatin 20 vs atorvastatin 40 mg). Reports of adverse experiences were generally similar among groups. In conclusion, treatment of hypercholesterolemic subjects at high cardiovascular risk with ezetimibe added to atorvastatin 10 or 20 mg produced significantly greater improvements in key lipid parameters and significantly greater attainment of LDL-C treatment targets than doubling atorvastatin or switching to (or doubling) rosuvastatin at the compared doses

    Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT

    Full text link
    Pulsars are rapidly-rotating, highly-magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently, only seven were observed to pulse in gamma rays and these were all discovered at other wavelengths. The Fermi Large Area Telescope makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics and the energetics of pulsar wind nebulae and supernova remnants.Comment: Corresponding authors: Michael Dormody, Paul S. Ray, Pablo M. Saz Parkinson, Marcus Ziegle

    Detection of variable VHE gamma-ray emission from the extra-galactic gamma-ray binary LMC P3

    Full text link
    Context. Recently, the high-energy (HE, 0.1-100 GeV) γ\gamma-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic γ\gamma-ray binary. Aims. This work aims at the detection of very-high-energy (VHE, >100 GeV) γ\gamma-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods. LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period of the system in order to test for variability of the emission. Energy spectra are obtained for the orbit-averaged data set, and for the orbital phase bin around the VHE maximum. Results. VHE γ\gamma-ray emission is detected with a statistical significance of 6.4 σ\sigma. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the 1101-10 TeV energy range is (1.4±0.2)×1035(1.4 \pm 0.2) \times 10^{35} erg/s. A luminosity of (5±1)×1035(5 \pm 1) \times 10^{35} erg/s is reached during 20% of the orbit. HE and VHE γ\gamma-ray emissions are anti-correlated. LMC P3 is the most luminous γ\gamma-ray binary known so far.Comment: 5 pages, 3 figures, 1 table, accepted for publication in A&

    Discovery of VHE gamma-rays from the high-frequency-peaked BL Lac object RGB J0152+017

    Full text link
    Aims: The BL Lac object RGB J0152+017 (z=0.080) was predicted to be a very high-energy (VHE; > 100 GeV) gamma-ray source, due to its high X-ray and radio fluxes. Our aim is to understand the radiative processes by investigating the observed emission and its production mechanism using the High Energy Stereoscopic System (H.E.S.S.) experiment. Methods: We report recent observations of the BL Lac source RGB J0152+017 made in late October and November 2007 with the H.E.S.S. array consisting of four imaging atmospheric Cherenkov telescopes. Contemporaneous observations were made in X-rays by the Swift and RXTE satellites, in the optical band with the ATOM telescope, and in the radio band with the Nancay Radio Telescope. Results: A signal of 173 gamma-ray photons corresponding to a statistical significance of 6.6 sigma was found in the data. The energy spectrum of the source can be described by a powerlaw with a spectral index of 2.95+/-0.36stat+/-0.20syst. The integral flux above 300 GeV corresponds to ~2% of the flux of the Crab nebula. The source spectral energy distribution (SED) can be described using a two-component non-thermal synchrotron self-Compton (SSC) leptonic model, except in the optical band, which is dominated by a thermal host galaxy component. The parameters that are found are very close to those found in similar SSC studies in TeV blazars. Conclusions: RGB J0152+017 is discovered as a source of VHE gamma-rays by H.E.S.S. The location of its synchrotron peak, as derived from the SED in Swift data, allows clearly classification it as a high-frequency-peaked BL Lac (HBL).Comment: Accepted for publication in A&A Letters (5 pages, 4 figures

    Observations of Milky Way Dwarf Spheroidal galaxies with the Fermi-LAT detector and constraints on Dark Matter models

    Get PDF
    We report on the observations of 14 dwarf spheroidal galaxies with the Fermi Gamma-Ray Space Telescope taken during the first 11 months of survey mode operations. The Fermi telescope provides a new opportunity to test particle dark matter models through the expected gamma-ray emission produced by pair annihilation of weakly interacting massive particles (WIMPs). Local Group dwarf spheroidal galaxies, the largest galactic substructures predicted by the cold dark matter scenario, are attractive targets for such indirect searches for dark matter because they are nearby and among the most extreme dark matter dominated environments. No significant gamma-ray emission was detected above 100 MeV from the candidate dwarf galaxies. We determine upper limits to the gamma-ray flux assuming both power-law spectra and representative spectra from WIMP annihilation. The resulting integral flux above 100 MeV is constrained to be at a level below around 10^-9 photons cm^-2 s^-1. Using recent stellar kinematic data, the gamma-ray flux limits are combined with improved determinations of the dark matter density profile in 8 of the 14 candidate dwarfs to place limits on the pair annihilation cross-section of WIMPs in several widely studied extensions of the standard model. With the present data, we are able to rule out large parts of the parameter space where the thermal relic density is below the observed cosmological dark matter density and WIMPs (neutralinos here) are dominantly produced non-thermally, e.g. in models where supersymmetry breaking occurs via anomaly mediation. The gamma-ray limits presented here also constrain some WIMP models proposed to explain the Fermi and PAMELA e^+e^- data, including low-mass wino-like neutralinos and models with TeV masses pair-annihilating into muon-antimuon pairs. (Abridged)Comment: 25 pages, 4 figures, accepted to ApJ, Corresponding authors: J. Cohen-Tanugi, C. Farnier, T.E. Jeltema, E. Nuss, and S. Profum

    Fermi-LAT observations of the exceptional gamma-ray outbursts of 3C 273 in September 2009

    Full text link
    We present the light curves and spectral data of two exceptionally luminous gamma-ray outburts observed by the Large Area Telescope (LAT) experiment on board Fermi Gamma-ray Space Telescope from 3C 273 in September 2009. During these flares, having a duration of a few days, the source reached its highest gamma-ray flux ever measured. This allowed us to study in some details their spectral and temporal structures. The rise and decay are asymmetric on timescales of 6 hours, and the spectral index was significantly harder during the flares than during the preceding 11 months. We also found that short, very intense flares put out the same time-integrated energy as long, less intense flares like that observed in August 2009.Comment: Corresponding authors: E. Massaro, [email protected]; G. Tosti, [email protected]. 15 pages, 4 figures, published in The Astrophysical Journal Letters, Volume 714, Issue 1, pp. L73-L78 (2010
    corecore