139 research outputs found
Newly detected ozone-depleting substances in the atmosphere
Ozone-depleting substances emitted through human activitiescause large-scale damage to the stratospheric ozone layer, and influence global climate. Consequently, the production of many of these substances has been phased out; prominent examples are the chlorofluorocarbons (CFCs), and their intermediate replacements, the hydrochlorofluorocarbons (HCFCs). So far,
seven types of CFC and six types of HCFC have been shown to contribute to stratospheric ozone destruction 1,2. Here, we report the detection and quantification of a further three CFCs and one HCFC. We analysed the composition of unpolluted air samples collected in Tasmania between 1978 and 2012, and extracted from deep firn snow in Greenland in 2008, using gas
chromatography with mass spectrometric detection. Using the firn data, we show that all four compounds started to emerge in the atmosphere in the 1960s. Two of the compounds continue to accumulate in the atmosphere. We estimate that, before 2012, emissions of all four compounds combined amounted to more than 74,000 tonnes. This is small compared with peak
emissions of other CFCs in the 1980s of more than one million tonnes each year 2. However, the reported emissions are clearly contrary to the intentions behind the Montreal Protocol, and raise questions about the sources of these gases
Sub-Telomere Directed Gene Expression during Initiation of Invasive Aspergillosis
Aspergillus fumigatus is a common mould whose spores are a
component of the normal airborne flora. Immune dysfunction permits developmental
growth of inhaled spores in the human lung causing aspergillosis, a significant
threat to human health in the form of allergic, and life-threatening invasive
infections. The success of A. fumigatus as a pathogen is unique
among close phylogenetic relatives and is poorly characterised at the molecular
level. Recent genome sequencing of several Aspergillus species
provides an exceptional opportunity to analyse fungal virulence attributes
within a genomic and evolutionary context. To identify genes preferentially
expressed during adaptation to the mammalian host niche, we generated multiple
gene expression profiles from minute samplings of A. fumigatus
germlings during initiation of murine infection. They reveal a highly
co-ordinated A. fumigatus gene expression programme, governing
metabolic and physiological adaptation, which allows the organism to prosper
within the mammalian niche. As functions of phylogenetic conservation and
genetic locus, 28% and 30%, respectively, of the
A. fumigatus subtelomeric and lineage-specific gene
repertoires are induced relative to laboratory culture, and physically clustered
genes including loci directing pseurotin, gliotoxin and siderophore biosyntheses
are a prominent feature. Locationally biased A. fumigatus gene
expression is not prompted by in vitro iron limitation, acid,
alkaline, anaerobic or oxidative stress. However, subtelomeric gene expression
is favoured following ex vivo neutrophil exposure and in
comparative analyses of richly and poorly nourished laboratory cultured
germlings. We found remarkable concordance between the A.
fumigatus host-adaptation transcriptome and those resulting from
in vitro iron depletion, alkaline shift, nitrogen
starvation and loss of the methyltransferase LaeA. This first transcriptional
snapshot of a fungal genome during initiation of mammalian infection provides
the global perspective required to direct much-needed diagnostic and therapeutic
strategies and reveals genome organisation and subtelomeric diversity as
potential driving forces in the evolution of pathogenicity in the genus
Aspergillus
More rapid polar ozone depletion through the reaction of HOCI with HCI on polar stratospheric clouds
THE direct reaction of HOC1 with HC1, known to occur in liquid water1 and on glass surfaces2, has now been measured on surfaces similar to polar stratospheric clouds3,4 and is shown here to play a critical part in polar ozone loss. Two keys to understanding the chemistry of the Antarctic ozone hole5-7 are, one, the recognition that reactions on polar stratospheric clouds transform HC1 into more reactive species denoted by ClOx(refs 812) and, two, the discovery of the ClO-dimer (C12O2) mechanism that rapidly catalyses destruction of O3(refs 1315). Observations of high levels of OClO and ClO in the springtime Antarctic stratosphere1619 confirm that most of the available chlorine is in the form of ClOx (refs 20, 21). But current photochemical models22,23 have difficulty converting HC1 to ClOx rapidly enough in early spring to account fully for the observations5-7,20,21. Here I show, using a chemical model, that the direct reaction of HOC1 with HC1 provides the missing mechanism. As alternative sources of nitrogen-containing oxidants, such as N2O5 and ClONO2, have been converted in the late autumn to inactive HNO3 by known reactions on the sulphate-layer aerosols24-27, the reaction of HOC1 with HC1 on polar stratospheric clouds becomes the most important pathway for releasing that stratospheric chlorine which goes into polar night as HC1. © 1992 Nature Publishing Group
Renewed and emerging concerns over the production and emission of ozone-depleting substances
Stratospheric ozone depletion, first observed in the 1980s, has been caused by the increased production and use of substances such as chlorofluorocarbons (CFCs), halons and other chlorine-containing and bromine-containing compounds, collectively termed ozone-depleting substances (ODSs). Following controls on the production of major, long-lived ODSs by the Montreal Protocol, the ozone layer is now showing initial signs of recovery and is anticipated to return to pre-depletion levels in the mid-to-late twenty-first century, likely 2050–2060. These return dates assume widespread compliance with the Montreal Protocol and, thereby, continued reductions in ODS emissions. However, recent observations reveal increasing emissions of some controlled (for example, CFC-11, as in eastern China) and uncontrolled substances (for example, very short-lived substances (VSLSs)). Indeed, the emissions of a number of uncontrolled VSLSs are adding significant amounts of ozone-depleting chlorine to the atmosphere. In this Review, we discuss recent emissions of both long-lived ODSs and halogenated VSLSs, and how these might lead to a delay in ozone recovery. Continued improvements in observational tools and modelling approaches are needed to assess these emerging challenges to a timely recovery of the ozone layer
- …