31 research outputs found

    FKS Mutations and Elevated Echinocandin MIC Values among Candida glabrata Isolates from U.S. Population-Based Surveillance â–ż

    No full text
    Candida glabrata is the second leading cause of candidemia in the United States. Its high-level resistance to triazole antifungal drugs has led to the increased use of the echinocandin class of antifungal agents for primary therapy of these infections. We monitored C. glabrata bloodstream isolates from a population-based surveillance study for elevated echinocandin MIC values (MICs of ≥0.25 μg/ml). From the 490 C. glabrata isolates that were screened, we identified 16 isolates with an elevated MIC value (2.9% of isolates from Atlanta and 2.0% of isolates from Baltimore) for one or more of the echinocandin drugs caspofungin, anidulafungin, and micafungin. All of the isolates with elevated MIC values had a mutation in the previously identified hot spot 1 of either the glucan synthase FKS1 (n = 2) or FKS2 (n = 14) gene. No mutations were detected in hot spot 2 of either FKS1 or FKS2. The predominant mutation was mutation of FKS2-encoded serine 663 to proline (S663P), found in 10 of the isolates with elevated echinocandin MICs. Two of the mutations, R631G for FKS1 and R665G for FKS2, have not been reported previously for C. glabrata. Multilocus sequence typing indicated that the predominance of the S663P mutation was not due to the clonal spread of a single sequence type. With a rising number of echinocandin therapy failures reported, it is important to continue to monitor rates of elevated echinocandin MIC values and the associated mutations

    Declining incidence of candidemia and the shifting epidemiology of Candida resistance in two US metropolitan areas, 2008-2013: results from population-based surveillance.

    No full text
    Recent reports have demonstrated a decline in bacterial bloodstream infections (BSIs) following adherence to central line insertion practices; however, declines have been less evident for BSIs due to Candida species.We conducted active, population-based laboratory surveillance for candidemia in metropolitan Atlanta, GA and Baltimore, MD over a 5-year period. We calculated annual candidemia incidence and antifungal drug resistance rates.We identified 3,848 candidemia cases from 2008-2013. Compared with 2008, candidemia incidence per 100,000 person-years decreased significantly by 2013 in both locations (GA: 14.1 to 9.5, p<0.001; MD: 30.9 to 14.4, p<0.001). A total of 3,255 cases (85%) had a central venous catheter (CVC) in place within 2 days before the BSI culture date. In both locations, the number of CVC-associated cases declined (GA: 473 to 294; MD: 384 to 151). Candida albicans (CA, 36%) and Candida glabrata (CG, 27%) were the most common species recovered. In both locations, the proportion of cases with fluconazole resistance decreased (GA: 8.0% to 7.1%, -10%; MD: 6.6% to 4.9%, -25%), while the proportion of cases with an isolate resistant to an echinocandin increased (GA: 1.2% to 2.9%, +147%; MD: 2.0% to 3.5%, +77%). Most (74%) echinocandin-resistant isolates were CG; 17 (<1%) isolates were resistant to both drug categories (multidrug resistant [MDR], 16/17 were CG). The proportion of CG cases with MDR Candida increased from 1.8% to 2.6%.We observed a significant decline in the incidence of candidemia over a five-year period, and increases in echinocandin-resistant and MDR Candida. Efforts to strengthen infection control practices may be preventing candidemia among high-risk patients. Further surveillance for resistant Candida is warranted

    Lysophosphatidic acid stimulates urokinase receptor (uPAR/CD87) in ovarian epithelial cancer cells

    No full text
    Lysophosphatidic acid (LPA) is a bioactive lipid positively linked with ovarian cancer progression. The multi-functional urokinase receptor (uPAR), a cell-surface glycoprotein, binds and facilitates activation of uPA and laterally regulates integrin and tyrosine kinase receptor activities in promotion of cell migration and invasion. We hypothesized that LPA stimulates uPAR expression and activity in ovarian epithelial cancer cells. Materials and Methods: Ovarian epithelial cancer cell lines OVCA 429 and OVCA 433 were stimulated with LPA and examined for uPAR mRNA expression and protein localization. uPA binding to OVCA plasma membranes was measured through enzymatic analysis of affinity-isolated cell-surface proteins. Results: LPA drove cell-surface uPAR aggregation and mRNA expression concomitant with increased cell-surface binding of uPA. Both control and LPA-stimulated uPAR expression and uPA cell-surface association involved phosphatidylinositol 3-kinase, but not p38 or p42 mitogen-activated protein kinase, signaling. Conclusion: These data provide mechanistic insight into ovarian epithelial cancer cell progression by demonstrating that LPA drives uPAR expression and uPA binding
    corecore