5,569 research outputs found

    Isobar-free neon isotope measurements of flux-fused potential reference minerals on a Helix-MC-Plus^(10K) mass spectrometer

    Get PDF
    This work presents new analytical techniques for extraction and analysis of neon from a suite of different mineral phases, including quartz, pyroxene, hematite, apatite, zircon, topaz, and fluorite. Neon was quantitatively extracted at 1100 °C from all of these minerals using an in-vacuum lithium borate-flux fusion technique. Evolved neon was purified using a cryogenic method capable of separating Ne from He present in abundances ~8 orders of magnitude higher, typical of samples carrying nucleogenic/radiogenic noble gases. The purified neon was measured on a Helix-MC-Plus^(10K) mass spectrometer that permits isobar-free measurement of all three neon isotopes. When operated at its highest mass resolving power (MRP) of ~10,300, the shoulder representing solely ²²Ne on the low mass-side of the ²²Ne-CO₂⁺² doublet is wide enough to permit measurement of isobar free ²²Ne. Operating in this mode comes with the penalty of a 50% reduction in neon sensitivity. Coupled with a mathematical isobar-stripping method, this approach excludes 99.5% of the CO₂⁺² while still collecting >99% of the ²²Ne beam. Routine edge-centering on the dynamic CO₂⁺² peak prior to introduction of a sample permits rapid and robust relocation of the desired measure point in the mass spectrum. Cosmogenic ²¹Ne and ²²Ne concentrations obtained using these methods on the Cronus-A quartz and Cronus-P pyroxene international reference materials are in excellent agreement with previous work or expectations. Similarly, the concentration of nucleogenic ²¹Ne and ²²Ne in Durango apatite and the CIT hematite standard agree well with previous work. Durango apatite has notable heterogeneity in neon concentrations, consistent with previous observations of heterogeneous He, U and Th concentrations in this apatite. Nucleogenic neon concentrations are also presented for previously unstudied minerals including a Sri Lanka zircon (SLC), a topaz from the Imperial Topaz mine in Brazil (ITP1), and a fluorite (W-90) from New Hampshire. Taken together this set of potential reference minerals and the associated dataset provide a starting point for intercalibration among multiple mineral phases carrying ²¹Ne and ²²Ne of cosmogenic or nucleogenic origin

    Graphics and composite material computer program enhancements for SPAR

    Get PDF
    User documentation is provided for additional computer programs developed for use in conjunction with SPAR. These programs plot digital data, simplify input for composite material section properties, and compute lamina stresses and strains. Sample problems are presented including execution procedures, program input, and graphical output

    Ionospheric E-region Irregularities Produced by Non-linear Coupling of Unstable Plasma Waves

    Get PDF
    Ionospheric E region irregularities produced by nonlinear coupling of unstable plasma wave

    Spin-2 Amplitudes in Black-Hole Evaporation

    Full text link
    Quantum amplitudes for s=2s=2 gravitational-wave perturbations of Einstein/scalar collapse to a black hole are treated by analogy with s=1s=1 Maxwell perturbations. The spin-2 perturbations split into parts with odd and even parity. We use the Regge-Wheeler gauge; at a certain point we make a gauge transformation to an asymptotically-flat gauge, such that the metric perturbations have the expected falloff behaviour at large radii. By analogy with s=1s=1, for s=2s=2 natural 'coordinate' variables are given by the magnetic part Hij(i,j=1,2,3)H_{ij} (i,j=1,2,3) of the Weyl tensor, which can be taken as boundary data on a final space-like hypersurface ΣF\Sigma_F. For simplicity, we take the data on the initial surface ΣI\Sigma_I to be exactly spherically-symmetric. The (large) Lorentzian proper-time interval between ΣI\Sigma_I and ΣF\Sigma_F, measured at spatial infinity, is denoted by TT. We follow Feynman's +iϵ+i\epsilon prescription and rotate TT into the complex: TTexp(iθ)T\to{\mid}T{\mid} \exp(-i\theta), for 0<θπ/20<\theta\leq\pi/2. The corresponding complexified {\it classical} boundary-value problem is expected to be well-posed. The Lorentzian quantum amplitude is recovered by taking the limit as θ0+\theta\to 0_+. For boundary data well below the Planck scale, and for a locally supersymmetric theory, this involves only the semi-classical amplitude exp(iSclass(2)\exp(iS^{(2)}_{\rm class}, where Sclass(2)S^{(2)}_{\rm class} denotes the second-variation classical action. The relations between the s=1s=1 and s=2s=2 natural boundary data, involving supersymmetry, are investigated using 2-component spinor language in terms of the Maxwell field strength ϕAB=ϕ(AB)\phi_{AB}=\phi_{(AB)} and the Weyl spinor ΨABCD=Ψ(ABCD)\Psi_{ABCD}=\Psi_{(ABCD)}
    corecore