22 research outputs found

    A hardware implementation of 6dof quadcopter matlab/simulink controller algorithm to an autopilot

    Get PDF
    This paper presents a hardware implementation of Control algorithm for 6DOF Quadcopter developed on MATLAB/SIMULINK to an autopilot Microcontroller (PIXHAWK) using MATLAB/SIMULINK Embedded Coder. After the validation of the SIMULINK model controller results through the software simulation, the designed controller is converted into C\C++ and uploaded into the Pixhawk autopilot by creating SIMULINK application in the autopilot firmware. This paper presents a rapid and real test solution for quadcopter control system using Pixhawk autopilot which will provide further real adjustment for the control parameters. This feature is used in this research is to deploy the SIMULINK codes into the Pixhawk autopilot board through the Embedded Coder Tool.N/

    Towards the development of a sustainable soya bean-based feedstock for aquaculture

    Get PDF
    Soya bean (Glycine max (L.) Merr.) is sought after for both its oil and protein components. Genetic approaches to add value to either component are ongoing efforts in soya bean breeding and molecular biology programmes. The former is the primary vegetable oil consumed in the world. Hence, its primary usage is in direct human consumption. As a means to increase its utility in feed applications, thereby expanding the market of soya bean coproducts, we investigated the simultaneous displacement of marine ingredients in aquafeeds with soya bean-based protein and a high Omega-3 fatty acid soya bean oil, enriched with alpha-linolenic and stearidonic acids, in both steelhead trout (Oncorhynchus mykiss) and Kampachi (Seriola rivoliana). Communicated herein are aquafeed formulations with major reduction in marine ingredients that translates to more total Omega-3 fatty acids in harvested flesh. Building off of these findings, subsequent efforts were directed towards a genetic strategy that would translate to a prototype design of an optimal identity-preserved soya bean-based feedstock for aquaculture, whereby a multigene stack approach for the targeted synthesis of two value-added output traits, eicosapentaenoic acid and the ketocarotenoid, astaxanthin, were introduced into the crop. To this end, the systematic introduction of seven transgenic cassettes into soya bean, and the molecular and phenotypic evaluation of the derived novel events are described. Includes supplementary materials

    Towards the development of a sustainable soya bean-based feedstock for aquaculture

    Get PDF
    Soya bean (Glycine max (L.) Merr.) is sought after for both its oil and protein components. Genetic approaches to add value to either component are ongoing efforts in soya bean breeding and molecular biology programmes. The former is the primary vegetable oil consumed in the world. Hence, its primary usage is in direct human consumption. As a means to increase its utility in feed applications, thereby expanding the market of soya bean coproducts, we investigated the simultaneous displacement of marine ingredients in aquafeeds with soya bean-based protein and a high Omega-3 fatty acid soya bean oil, enriched with alpha-linolenic and stearidonic acids, in both steelhead trout (Oncorhynchus mykiss) and Kampachi (Seriola rivoliana). Communicated herein are aquafeed formulations with major reduction in marine ingredients that translates to more total Omega-3 fatty acids in harvested flesh. Building off of these findings, subsequent efforts were directed towards a genetic strategy that would translate to a prototype design of an optimal identity-preserved soya bean-based feedstock for aquaculture, whereby a multigene stack approach for the targeted synthesis of two value-added output traits, eicosapentaenoic acid and the ketocarotenoid, astaxanthin, were introduced into the crop. To this end, the systematic introduction of seven transgenic cassettes into soya bean, and the molecular and phenotypic evaluation of the derived novel events are described. Includes supplementary materials

    Acute Exposure to Artesunate and its Effect on the Hematological Indices, Hepatotoxicity and Histology of the Liver of Adult Wistar Rats

    Get PDF
    Abstract: The effect of artesunate on the hematological indices, hepatotoxicity and histology of liver was investigated in 20 adult male wistar rats. The animals were divided into 4 groups of 5 each and group 1 which served as control were administered normal saline while groups 2, 3 and 4 were administered 1, 2 and 5 mg/kg/day respectively for a period of 5 days. The animals were humanely sacrificed on the sixth day and blood samples were obtained for hematological indices and serum enzyme analysis. The liver were excised and processed for light microscopy using the H & E stain. Hematological indices indicated insignificant difference in the RBC, WBC and DC counts, while a significant dose dependent increase in PCV and hemoglobin were observed (p<0.05). No changes were observed in the serum levels of Aspartate Aminotransferase (AST), Alanine Aminotransferase (ALT) and Alkaline Phosphatase (ALP) among the groups. Histological examination of the liver revealed points of focal necrosis among the treated groups. The mild liver tissue damage was more evident among the over dosed group. Artesunate is thus safe, when administered within the therapeutic range

    Accumulation of Succinyl Coenzyme A Perturbs the Methicillin-Resistant Staphylococcus aureus (MRSA) Succinylome and Is Associated with Increased Susceptibility to Beta-Lactam Antibiotics

    Get PDF
    Penicillin binding protein 2a (PBP2a)-dependent resistance to β-lactam antibiotics in methicillin-resistant Staphylococcus aureus (MRSA) is regulated by the activity of the tricarboxylic acid (TCA) cycle via a poorly understood mechanism. We report that mutations in sucC and sucD, but not other TCA cycle enzymes, negatively impact β-lactam resistance without changing PBP2a expression. Increased intracellular levels of succinyl coenzyme A (succinyl-CoA) in the sucC mutant significantly perturbed lysine succinylation in the MRSA proteome. Suppressor mutations in sucA or sucB, responsible for succinyl-CoA biosynthesis, reversed sucC mutant phenotypes. The major autolysin (Atl) was the most succinylated protein in the proteome, and increased Atl succinylation in the sucC mutant was associated with loss of autolytic activity. Although PBP2a and PBP2 were also among the most succinylated proteins in the MRSA proteome, peptidoglycan architecture and cross-linking were unchanged in the sucC mutant. These data reveal that perturbation of the MRSA succinylome impacts two interconnected cell wall phenotypes, leading to repression of autolytic activity and increased susceptibility to β-lactam antibiotics. IMPORTANCE mecA-dependent methicillin resistance in MRSA is subject to regulation by numerous accessory factors involved in cell wall biosynthesis, nucleotide signaling, and central metabolism. Here, we report that mutations in the TCA cycle gene, sucC, increased susceptibility to β-lactam antibiotics and was accompanied by significant accumulation of succinyl-CoA, which in turn perturbed lysine succinylation in the proteome. Although cell wall structure and cross-linking were unchanged, significantly increased succinylation of the major autolysin Atl, which was the most succinylated protein in the proteome, was accompanied by near complete repression of autolytic activity. These findings link central metabolism and levels of succinyl-CoA to the regulation of β-lactam antibiotic resistance in MRSA through succinylome-mediated control of two interlinked cell wall phenotypes. Drug-mediated interference of the SucCD-controlled succinylome may help overcome β-lactam resistance

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    Culture technique of rabbit primary epidermal keratinocytes

    No full text
    The epidermis is the protective covering outer layer of the mammalian skin. The epidermal cells are stratified squamous epithelia which undergo continuous differentiation of loss and replacement of cells. Ninety per cent of epidermal cells consist of keratinocytes that are found in the basal layer of the stratified epithelium called epidermis. Keratinocytes are responsible for forming tight junctions with the nerves of the skin as well as in the process of wound healing. This article highlights the method of isolation and culture of rabbit primary epidermal keratinocytes in vitro. Approximately 2cm x 2cm oval shaped line was drawn on the dorsum of the rabbit to mark the surgical area. Then, the skin was carefully excised using a surgical blade and the target skin specimens harvested from the rabbits were placed in transport medium comprising of Dulbecco’s Modified Eagle Medium (DMEM) and 1% of antibiotic-antimycotic solution. The specimens were transferred into a petri dish containing 70% ethanol and washed for 5 min followed by a wash in 1 x Dulbecco’s Phosphate Buffered Saline (DBPS). Then, the skin specimens were placed in DMEM and minced into small pieces using a scalpel. The minced pieces were placed in a centrifuge tube containing 0.6% Dispase and 1% antibiotic-antimycotic solution overnight at 4°C in a horizontal orientation. The epidermis layer (whitish, semi-transparent) was separated from the dermis (pink, opaque, gooey) with the aid of curved forceps by fixing the dermis with one pair of forceps while detaching the epidermis with the second pair. The cells were cultured at a density of 4 x 104 cells/cm2 in culture flask at 37°C and 5% CO2. The cell morphology of the keratinocytes was analyzed using inverted microscope

    Design and Implementation of a Robust 6-DOF Quadrotor Controller Based on Kalman Filter for Position Control

    No full text
    The objective of this chapter is to develop quadcopter flight control algorithms using a PID controller enhanced by a Kalman Filter (KF) using an experimental approach to extract the physical and aerodynamic settings of the quadcopter. It is first necessary to present the current state of the quadcopter analytical dynamics model in order to achieve an effective design. A second step involves the development of the quadcopter’s hardware and software, as well as the development of a full thrust test rig to extract the parameters of the propulsion system and the linearisation approximations between the different variables. Using the quadcopter’s 6-DOF analytical dynamic model, the controller’s control parameters are determined using a PID design enhanced with KF. Test results were assessed using dynamic response curves and 3D Matlab visualisations. In order to evaluate the performance of the PID controllers, we measured the time response, overshoot, and settling time with and without the KF. After the SIMULINK model’s results for the drone were accepted, a C++ code was produced. Uploading the generated code into the Pixhawk autopilot was accomplished through a Simulink application in the autopilot firmware. Based on the Pixhawk autopilot, we present a quick and real-time test solution for drone controllers. Further enhancements are provided by near-real-time tuning of the control settings. This research uses the Embedded Coder Tool to develop SIMULINK-generated code for the Pixhawk autopilot board

    ProT is the primary proline transporter in the presence of high salt.

    No full text
    Growth analysis of the following strains in CDM supplemented with 1 M NaCl: A) JE2, penta, Δ4-proT, Δ4-opuC, Δ4-opuD, Δ4-proP, and Δ4-putP B) JE2, penta, ΔproT, ΔopuC, ΔopuD, ΔproP, and ΔputP C) JE2, ΔproC, ΔproT, and ΔproT ΔproC D) JE2 empty vector, penta empty vector, penta Pcad::proT, penta Pcad::opuC, penta Pcad::opuD, penta Pcad::proP, and penta Pcad::putP reveal ProT is important for maximal growth under these conditions. Data are represented by the mean ± SD (n = 2–3).</p
    corecore