94 research outputs found

    Partially quenched chiral perturbation theory and numerical simulations

    Get PDF
    The dependence of the pseudoscalar meson mass and decay constant is compared to one-loop Partially Quenched Chiral Perturbation Theory (PQChPT) in a numerical simulation with two light dynamical quarks. The characteristic behaviour with chiral logarithms is observed. The values of the fitted PQChPT-parameters are in a range close to the expectation in continuum in spite of the fact that the lattice spacing is still large, namely a=0.28 fm.Comment: 11 pages, 3 figures; discussion of the results in section 3 extende

    Pion mass splitting and phase structure in Twisted Mass QCD

    Full text link
    In the framework of Wilson Chiral Perturbation Theory, we study the effect induced by a twisted Wilson term, as it appears in Twisted Mass QCD (with 2 degenerate quarks). In particular we consider the vacuum orientation and the pion masses. The computations are done to NLO both in the mass and in the lattice spacing (i.e. to O(a^2)). There are no restrictions on the relative size of lattice artifacts with respect to the physical mass, thus allowing, in principle, to bridge between the physical regime and the unphysical one, where lattice artifacts tend to dominate. The inclusion of O(a^2) lattice artifacts can account for the splitting of degeneracy of the three pion masses. Moreover O(a^2) terms are necessary to model non trivial behaviors of the vacuum orientation such as possible Aoki phases. It turns out that these last two phenomena are determined by the same constant.Comment: 20 pages 40 figures, references updated, to be published in EPJ

    Lattice Spacing Dependence of the First Order Phase Transition for Dynamical Twisted Mass Fermions

    Full text link
    Lattice QCD with Wilson fermions generically shows the phenomenon of a first order phase transition. We study the phase structure of lattice QCD using Wilson twisted mass fermions and the Wilson plaquette gauge action are used in a range of beta values where such a first order phase transition is observed. In particular, we investigate the dependence of the first order phase transition on the value of the lattice spacing. Using only data in one phase and neglecting possible problems arising from the phase transition we are able to perform a first scaling test for physical quantities using this action.Comment: 15 pages, 7 figures, typo corrected, web-list of authors correcte

    Lattice QCD with light dynamical quarks

    Get PDF
    We report on the simulation of QCD with light dynamical quarks using the two-step multi-boson (TSMB) algorithm. In an exploratory study with two flavours of quarks at lattice spacing about 0.27 fm and with quark mass down to one sixth of the strange quark mass eigenvalue spectra and autocorrelations have been studied. Here we present results on the volume dependence as well as tests of possible algorithmic improvements.Comment: 6 pages, Lattice2002(spectrum

    Exact results and approximation schemes for the Schwinger model with the overlap Dirac operator

    Get PDF
    We propose new techniques to implement numerically the overlap-Dirac operator which exploit the physical properties of the underlying theory to avoid nested algorithms. We test these procedures in the two-dimensional Schwinger model and the results are very promising. We also present a detailed computation of the spectrum and chiral properties of the Schwinger Model in the overlap lattice formulation.Comment: Lattice 2000 (Chiral Fermions

    The phase structure of lattice QCD with two flavours of Wilson quarks and renormalization group improved gluons

    Full text link
    The effect of changing the lattice action for the gluon field on the recently observed [1] first order phase transition near zero quark mass is investigated by replacing the Wilson plaquette action by the DBW2 action. The lattice action for quarks is unchanged: it is in both cases the original Wilson action. It turns out that Wilson fermions with the DBW2 gauge action have a phase structure where the minimal pion mass and the jump of the average plaquette are decreased, when compared to Wilson fermions with Wilson plaquette action at similar values of the lattice spacing. Taking the DBW2 gauge action is advantageous also from the point of view of the computational costs of numerical simulations.Comment: 34 pages, 3 tables, 14 figures; revised version to appear in EPJ

    Topology in CP(N-1) models: a critical comparison of different cooling techniques

    Full text link
    Various cooling methods, including a recently introduced one which smoothes out only quantum fluctuations larger than a given threshold, are applied to the study of topology in 2d CP(N-1) models. A critical comparison of their properties is performed.Comment: Poster at LATTICE99(Topology and confinement), 3 pages, 5 eps figures, uses espcrc2.st

    Sum Rules for the Dirac Spectrum of the Schwinger Model

    Full text link
    The inverse eigenvalues of the Dirac operator in the Schwinger model satisfy the same Leutwyler-Smilga sum rules as in the case of QCD with one flavor. In this paper we give a microscopic derivation of these sum rules in the sector of arbitrary topological charge. We show that the sum rules can be obtained from the clustering property of the scalar correlation functions. This argument also holds for other theories with a mass gap and broken chiral symmetry such as QCD with one flavor. For QCD with several flavors a modified clustering property is derived from the low energy chiral Lagrangian. We also obtain sum rules for a fixed external gauge field and show their relation with the bosonized version of the Schwinger model. In the sector of topological charge ν\nu the sum rules are consistent with a shift of the Dirac spectrum away from zero by ν/2\nu/2 average level spacings. This shift is also required to obtain a nonzero chiral condensate in the massless limit. Finally, we discuss the Dirac spectrum for a closely related two-dimensional theory for which the gauge field action is quadratic in the the gauge fields. This theory of so called random Dirac fermions has been discussed extensively in the context of the quantum Hall effect and d-wave super-conductors.Comment: 41 pages, Late
    • …
    corecore