126 research outputs found

    A monolithic MEMS position sensor for closed-loop high-speed atomic force microscopy

    Get PDF
    The accuracy and repeatability of atomic force microscopy (AFM) imaging significantly depend on the accuracy of the piezoactuator. However, nonlinear properties of piezoactuators can distort the image, necessitating sensor-based closed-loop actuators to achieve high accuracy AFM imaging. The advent of high-speed AFM has made the requirements on the position sensors in such a system even more stringent, requiring higher bandwidths and lower sensor mass than traditional sensors can provide. In this paper, we demonstrate a way for high-speed, high-precision closed-loop AFM nanopositioning using a novel, miniaturized micro-electro-mechanical system position sensor in conjunction with a simple PID controller. The sensor was developed to respond to the need for small, lightweight, high-bandwidth, long-range and sub-nm-resolution position measurements in high-speed AFM applications. We demonstrate the use of this sensor for closed-loop operation of conventional as well as high-speed AFM operation to provide distortion-free images. The presented implementation of this closed-loop approach allows for positioning precision down to 2.1 Å, reduces the integral nonlinearity to below 0.2%, and allows for accurate closed loop imaging at line rates up to 300 Hz

    Rise time reduction of thermal actuators operated in air and water through optimized pre-shaped open-loop driving

    Get PDF
    Electrothermal actuators have many advantages compared to other actuators used in micro-electro-mechanical systems (MEMS). They are simple to design, easy to fabricate and provide large displacements at low voltages. Low voltages enable less stringent passivation requirements for operation in liquid. Despite these advantages, thermal actuation is typically limited to a few kHz bandwidth when using step inputs due to its intrinsic thermal time constant. However, the use of pre-shaped input signals offers a route for reducing the rise time of these actuators by orders of magnitude. We started with an electrothermally actuated cantilever having an initial 10–90% rise time of 85 μs in air and 234 μs in water for a standard open-loop step input. We experimentally characterized the linearity and frequency response of the cantilever when operated in air and water, allowing us to obtain transfer functions for the two cases. We used these transfer functions, along with functions describing desired reduced rise-time system responses, to numerically simulate the required input signals. Using these pre-shaped input signals, we improved the open-loop 10–90% rise time from 85 μs to 3 μs in air and from 234 μs to 5 μs in water, an improvement by a factor of 28 and 47, respectively. Using this simple control strategy for MEMS electrothermal actuators makes them an attractive alternative to other high speed micromechanical actuators such as piezoelectric stacks or electrostatic comb structures which are more complex to design, fabricate, or operate

    Division site selection linked to inherited cell surface wave troughs in mycobacteria

    Get PDF
    Cell division is tightly controlled in space and time to maintain cell size and ploidy within narrow bounds. In bacteria, the canonical Minicell (Min) and nucleoid occlusion (Noc) systems together ensure that division is restricted to midcell after completion of chromosome segregation1. It is unknown how division site selection is controlled in bacteria that lack homologues of the Min and Noc proteins, including mycobacteria responsible for tuberculosis and other chronic infections2. Here, we use correlated optical and atomic-force microscopy3,4 to demonstrate that morphological landmarks (waveform troughs) on the undulating surface of mycobacterial cells correspond to future sites of cell division. Newborn cells inherit wave troughs from the (grand)mother cell and ultimately divide at the centre-most wave trough, making these morphological features the earliest known landmark of future division sites. In cells lacking the chromosome partitioning (Par) system, missegregation of chromosomes is accompanied by asymmetric cell division at off-centre wave troughs, resulting in the formation of anucleate cells. These results demonstrate that inherited morphological landmarks and chromosome positioning together restrict mycobacterial division to the midcell position

    Multidimensional Atomic Force Microscopy: A Versatile Novel Technology for Nanopharmacology Research

    Get PDF
    Nanotechnology is giving us a glimpse into a nascent field of nanopharmacology that deals with pharmacological phenomena at molecular scale. This review presents our perspective on the use of scanning probe microscopy techniques with special emphasis to multidimensional atomic force microscopy (m-AFM) to explore this new field with a particular emphasis to define targets, design therapeutics, and track outcomes of molecular-scale pharmacological interactions. The approach will be to first discuss operating principles of m-AFM and provide representative examples of studies to understand human health and disease at the molecular level and then to address different strategies in defining target macromolecules, screening potential drug candidates, developing and characterizing of drug delivery systems, and monitoring target–drug interactions. Finally, we will discuss some future directions including AFM tip-based parallel sensors integrated with other high-throughput technologies which could be a powerful platform for drug discovery

    AFM study of morphology and mechanical properties of a chimeric 2 spider silk and bone sialoprotein protein for bone regeneration

    Get PDF
    Atomic force microscopy (AFM) was used to assess a new chimeric protein consisting of a fusion protein of the consensus repeat for Nephila clavipes spider dragline protein and bone sialoprotein (6merþBSP). The elastic modulus of this protein in film form was assessed through force curves, and film surface roughness was also determined. The results showed a significant difference among the elastic modulus of the chimeric silk protein, 6merþBSP, and control films consisting of only the silk component (6mer). The behavior of the 6merþBSP and 6mer proteins in aqueous solution in the presence of calcium (Ca) ions was also assessed to determine interactions between the inorganic and organic components related to bone interactions, anchoring, and biomaterial network formation. The results demonstrated the formation of protein networks in the presence of Ca2þ ions, characteristics that may be important in the context of controlling materials assembly and properties related to bone formation with this new chimeric silk-BSP protein.Silvia Games thanks the Foundation for Science and Technology (FCT) for supporting her Ph.D. grant, SFRH/BD/28603/2006. This work was carried out under the scope of the European NoE EXPERTISSUES (NMP3-CT-2004-500283), the Chimera project (PTDC/EBB-EBI/109093/2008) funded by the FCT agency, the NIH (P41 EB002520) Tissue Engineering Resource Center, and the NIH (EB003210 and DE017207)

    Rough Fibrils Provide a Toughening Mechanism in Biological Fibers

    Get PDF
    Spider silk is a fascinating natural composite material. Its combination of strength and toughness is unrivalled in nature, and as a result, it has gained considerable interest from the medical, physics, and materials communities. Most of this attention has focused on the one to tens of nanometer scale: predominantly the primary (peptide sequences) and secondary (β sheets, helices, and amorphous domains) structure, with some insights into tertiary structure (the arrangement of these secondary structures) to describe the origins of the mechanical and biological performance. Starting with spider silk, and relating our findings to collagen fibrils, we describe toughening mechanisms at the hundreds of nanometer scale, namely, the fibril morphology and its consequences for mechanical behavior and the dissipation of energy. Under normal conditions, this morphology creates a nonslip fibril kinematics, restricting shearing between fibrils, yet allowing controlled local slipping under high shear stress, dissipating energy without bulk fracturing. This mechanism provides a relatively simple target for biomimicry and, thus, can potentially be used to increase fracture resistance in synthetic materials

    Mechanical properties of soft biological membranes for organ-on-a-chip assessed by bulge test and AFM

    Get PDF
    Advanced in vitro models called "organ-on-a-chip" can mimic the specific cellular environment found in various tissues. Many of these models include a thin, sometimes flexible, membrane aimed at mimicking the extracellular matrix (ECM) scaffold of in vivo barriers. These membranes are often made of polydimethylsiloxane (PDMS), a silicone rubber that poorly mimics the chemical and physical properties of the basal membrane. However, the ECM and its mechanical properties play a key role in the homeostasis of a tissue. Here, we report about biological membranes with a composition and mechanical properties similar to those found in vivo. Two types of collagen-elastin (CE) membranes were produced: vitrified and nonvitrified (called "hydrogel membrane"). Their mechanical properties were characterized using the bulge test method. The results were compared using atomic force microscopy (AFM), a standard technique used to evaluate the Young's modulus of soft materials at the nanoscale. Our results show that CE membranes with stiffnesses ranging from several hundred of kPa down to 1 kPa can be produced by tuning the CE ratio, the production mode (vitrified or not), and/or certain parameters such as temperature. The Young's modulus can easily be determined using the bulge test. This method is a robust and reproducible to determine membrane stiffness, even for soft membranes, which are more difficult to assess by AFM. Assessment of the impact of substrate stiffness on the spread of human fibroblasts on these surfaces showed that cell spread is lower on softer surfaces than on stiffer surfaces

    Investigations into the polymorphism of rat tail tendon fibrils using atomic force microscopy

    No full text
    Collagen type I displays a typical banding periodicity of 67 nm when visualized by atomic force or transmission electron microscopy imaging. We have investigated collagen fibers extracted from rat tail tendons using atomic force microscopy, under different ionic and pH conditions. The majority of the fibers reproduce the typical wavy structure with 67 nm spacing and a height difference between the peak and the grooves of at least 5 nm. However, we were also able to individuate two other banding patterns with 23 +/- 2 nm and 210 +/- 15 nm periodicities. The small pattern showed height differences of about 2 nm, whereas the large pattern seems to be a superposition of the 67 nm periodicity showing height differences of about 20 nm. Furthermore, we could show that at pH values of 3 and below the fibril structure gets dissolved whereas high concentrations of NaCl and CaCl2 could prevent this effect. (C) 2003 Elsevier Science (USA). All rights reserved

    Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization

    No full text
    Tendons are composed of collagen and other molecules in a highly organized hierarchical assembly, leading to extraordinary mechanical properties. To probe the cross-links on the lower level of organization, we used a cantilever to pull substructures out of the assembly. Advanced force probe technology, using small cantilevers (length <20 μm), improved the force resolution into the sub-10 pN range. In the force versus extension curves, we found an exponential increase in force and two different periodic rupture events, one with strong bonds (jumps in force of several hundred pN) with a periodicity of 78 nm and one with weak bonds (jumps in force of <7 pN) with a periodicity of 22 nm. We demonstrate a good correlation between the measured mechanical behavior of collagen fibers and their appearance in the micrographs taken with the atomic force microscope
    corecore