12 research outputs found
A semi-quantitative upconversion nanoparticle-based immunochromatographic assay for SARS-CoV-2 antigen detection
The unprecedented public health and economic impact of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been met with an equally unprecedented scientific response. Sensitive point-of-care methods to detect SARS-CoV-2 antigens in clinical specimens are urgently required for the rapid screening of individuals with viral infection. Here, we developed an upconversion nanoparticle-based lateral flow immunochromatographic assay (UCNP-LFIA) for the high-sensitivity detection of SARS-CoV-2 nucleocapsid (N) protein. A pair of rabbit SARS-CoV-2 N-specific monoclonal antibodies was conjugated to UCNPs, and the prepared UCNPs were then deposited into the LFIA test strips for detecting and capturing the N protein. Under the test conditions, the limit of detection (LOD) of UCNP-LFIA for the N protein was 3.59 pg/mL, with a linear range of 0.01–100 ng/mL. Compared with that of the current colloidal gold-based LFIA strips, the LOD of the UCNP-LFIA-based method was increased by 100-fold. The antigen recovery rate of the developed method in the simulated pharyngeal swab samples ranged from 91.1 to 117.3%. Furthermore, compared with the reverse transcription-polymerase chain reaction, the developed UCNP-LFIA method showed a sensitivity of 94.73% for 19 patients with COVID-19. Thus, the newly established platform could serve as a promising and convenient fluorescent immunological sensing approach for the efficient screening and diagnosis of COVID-19
Unraveling the pathogenic potential of the Pentatrichomonas hominis PHGD strain: impact on IPEC-J2 cell growth, adhesion, and gene expression
Pentatrichomonas hominis, a flagellated parasitic protozoan, predominantly infects the mammalian digestive tract, often causing symptoms such as abdominal pain and diarrhea. However, studies investigating its pathogenicity are limited, and the mechanisms underlying P. hominis-induced diarrhea remain unclear. Establishing an in vitro cell model for P. hominis infection is imperative. This study investigated the interaction between P. hominis and IPEC-J2 cells and its impact on parasite growth, adhesion, morphology, and cell viability. Co-cultivation of P. hominis with IPEC-J2 cells resulted in exponential growth of the parasite, with peak densities reaching approximately 4.8 × 105 cells/mL and 1.2 × 106 cells/mL at 48 h for initial inoculation concentrations of 104 cells/mL and 105 cells/mL, respectively. The adhesion rate of P. hominis to IPEC-J2 cells reached a maximum of 93.82% and 86.57% at 24 h for initial inoculation concentrations of 104 cells/mL and 105 cells/mL, respectively. Morphological changes in IPEC-J2 cells co-cultivated with P. hominis were observed, manifesting as elongated and irregular shapes. The viability of IPEC-J2 cells exhibited a decreasing trend with increasing P. hominis concentration and co-cultivation time. Additionally, the mRNA expression levels of IL-6, IL-8, and TNF-α were upregulated, whereas those of CAT and CuZn-SOD were downregulated. These findings provide quantitative evidence that P. hominis can promote its growth by adhering to IPEC-J2 cells, inducing morphological changes, reducing cell viability, and triggering inflammatory responses. Further in vivo studies are warranted to confirm these results and enhance our understanding of P. hominis infection
Several first-line anti-hypertensives act on fibrosarcoma progression and PD1ab blockade therapy
Abstract Purpose Patients are typically diagnosed with both hypertension and fibrosarcoma. Medical oncologists must prescribe suitable anti-hypertensive medications while considering anti-tumor drugs. Recently, immunotherapy has become prominent in cancer treatment. Nonetheless, it is unknown what role anti-hypertensive medications will play in immunotherapy. Methods We examined the effects of six first-line anti-hypertensive medications on programmed cell death protein 1 antibody (PD1ab) in tumor treatment using a mouse model of subcutaneous fibrosarcoma. The drugs examined were verapamil, losartan, furosemide, spironolactone, captopril, and hydrochlorothiazide (HCTZ). The infiltration of CD8+ T cells was examined by immunohistochemistry. Additionally, several in vitro and in vivo assays were used to study the effects of HCTZ on human fibrosarcoma cancer cells to explore its mechanism. Results Verapamil suppressed tumor growth and showed an improved effect on the tumor inhibition of PD1ab. Captopril did not affect tumor growth but brought an unexpected benefit to PD1ab treatment. In contrast, spironolactone and furosemide showed no effect on tumor growth but had an offset effect on the PD1ab therapy. Consequently, the survival time of mice was also significantly reduced. Notably, losartan and HCTZ, especially HCTZ, promoted tumor growth and weakened the effect of PD1ab treatment. Consistent results were observed in vivo and in vitro using the human fibrosarcoma cell line HT1080. We determined that the Solute Carrier Family 12 Member 3 (SLC12A3), a known target of HCTZ, may be the principal factor underlying its effect-enhancing properties through mechanism studies employing The Cancer Genome Atlas (TCGA) data and in vivo and in vitro assays. Conclusion Verapamil and captopril potentiated the anti-tumor effect of PD1ab, whereas spironolactone and furosemide weakened the effect of PD1ab on tumor inhibition. Alarmingly, losartan and HCTZ promoted tumor growth and impaired the effect of PD1ab. Furthermore, we preliminarily found that HCTZ may promote tumor progression through SLC12A3. Based on this study, futher mechanism researches and clinical trials should be conducted in the future
Disruption of mitochondrial energy metabolism is a putative pathogenesis of Diamond-Blackfan anemia
Summary: Energy metabolism in the context of erythropoiesis and related diseases remains largely unexplored. Here, we developed a primary cell model by differentiating hematopoietic stem progenitor cells toward the erythroid lineage and suppressing the mitochondrial oxidative phosphorylation (OXPHOS) pathway. OXPHOS suppression led to differentiation failure of erythroid progenitors and defects in ribosome biogenesis. Ran GTPase-activating protein 1 (RanGAP1) was identified as a target of mitochondrial OXPHOS for ribosomal defects during erythropoiesis. Overexpression of RanGAP1 largely alleviated erythroid defects resulting from OXPHOS suppression. Coenzyme Q10, an activator of OXPHOS, largely rescued erythroid defects and increased RanGAP1 expression. Patients with Diamond-Blackfan anemia (DBA) exhibited OXPHOS suppression and a concomitant suppression of ribosome biogenesis. RNA-seq analysis implied that the substantial mutation (approximately 10%) in OXPHOS genes accounts for OXPHOS suppression in these patients. Conclusively, OXPHOS disruption and the associated disruptive mitochondrial energy metabolism are linked to the pathogenesis of DBA
Association Between Depressive Symptoms and Serum Brain-Derived Neurotrophic Factor Levels in Patients With First-Episode and Drug-Naive Schizophrenia
Previous studies have revealed that brain-derived neurotrophic factor (BDNF) levels are inversely associated with the severity of depressive symptoms. In addition, serum BDNF levels tend to increase with improvement in depressive symptoms. There is also evidence that BDNF has a possible role in the pathophysiology of schizophrenia. Therefore, the purpose of this study was to determine whether BDNF levels correlated with depressive symptoms in patients with first-episode and drug-naive (FEDN) schizophrenia. In this study, 90 patients with FEDN schizophrenia and 60 healthy controls were recruited. The Positive and Negative Syndrome Scale (PANSS) and the 17-item Hamilton Depression Scale (HAMD-17) were used to gage psychopathological and depressive symptoms, respectively. All participants had their BDNF levels measured using a sandwich enzyme-linked immunosorbent test. Serum BDNF levels were lower in patients with FEDN schizophrenia compared with healthy controls. Moreover, patients with depressive symptoms exhibited a higher PANSS total score and a higher general psychopathology score than those without depressive symptoms (p 0.05). In conclusion, BDNF levels were shown to be higher in the serum of patients with FEDN schizophrenia with depressive symptoms than in those without. Additionally, low levels of serum BDNF may contribute to the positive symptoms of FEDN schizophrenia but not to depressive symptoms