3,436 research outputs found
Fish play Minority Game as humans do
Previous computer simulations of the Minority Game (MG) have shown that the average agent number in the winning group (i.e., the minority group) had a maximal value such that the global gain was also maximal when an optimal amount of information was available to all agents . This property was further examined and its connection to financial markets has also been discussed . Here we report the results of an unprecedented real MG played by university staff members who clicked one of two identical buttons (A and B) on a computer screen while clocking in or out of work. We recorded the number of people who clicked button A for 1288 games, beginning on April 21, 2008 and ending on October 31, 2010, and calculated the variance among the people who clicked A as a function of time. We find that variance per person decreases to a minimum and rises to a value close to 1/4 which is the expected value when agents click buttons randomly. Our results are consistent with previous simulation results for the theoretical MG and suggest that our agents had employed more information for their strategies as their experience playing the game grew. We also carried out another experiment in which we forced 101 fish to enter one of the two symmetric chambers (A and B). We repeated the fish experiment 500 times and found that the variance of the number of fish that entered chamber A also decreased to a minimum and then increased to a saturated value, suggesting that fish have memory and can employ more strategies when facing the same situation again and again
Development of System Modules for Childrenās Games with Vision and Music-Based Interactive Real-Time Feedback Modules - A Design-Based Research Approach
Most past research on young childrenās attention focused on the design of multimedia games based on visual stimulation. In contrast, few studies have been on the development of teaching tools focusing on auditory stimulation. This study aims to develop a real-time interactive digital game with music and eye tracking for young children. The Design-Based Research (DBR) approach was adopted. Melodic tunes and lyrics composed by the researcher constitute the auditory stimulation, paired with visual images, in a game emphasizing interactivity between game content and players. Discussions were held between the various members of the developing team, during which the game developers and domain experts proposed suggestions to the researcher, who then continuously fine-tuned the game in line with the research objective. Our preliminary findings suggested that DBR, which emphasizes child-centered design, provides a novel and innovative approach to digital game design
Simultaneous image color correction and enhancement using particle swarm optimization
Color images captured under various environments are often not ready to deliver the desired quality due to adverse effects caused by uncontrollable illumination settings. In particular, when the illuminate color is not known a priori, the colors of the objects may not be faithfully reproduced and thus impose difficulties in subsequent image processing operations. Color correction thus becomes a very important pre-processing procedure where the goal is to produce an image as if it is captured under uniform chromatic illumination. On the other hand, conventional color correction algorithms using linear gain adjustments focus only on color manipulations and may not convey the maximum information contained in the image. This challenge can be posed as a multi-objective optimization problem that simultaneously corrects the undesirable effect of illumination color cast while recovering the information conveyed from the scene. A variation of the particle swarm optimization algorithm is further developed in the multi-objective optimization perspective that results in a solution achieving a desirable color balance and an adequate delivery of information. Experiments are conducted using a collection of color images of natural objects that were captured under different lighting conditions. Results have shown that the proposed method is capable of delivering images with higher quality. Ā© 2013 Elsevier Ltd. All rights reserved
Molecular Dynamics Simulations of the Roller Nanoimprint Process: Adhesion and Other Mechanical Characteristics
Molecular dynamics simulations using tight-binding many body potential are carried out to study the roller imprint process of a gold single crystal. The effect of the roller toothās taper angle, imprint depth, imprint temperature, and imprint direction on the imprint force, adhesion, stress distribution, and strain are investigated. A two-stage roller imprint process was obtained from an imprint force curve. The two-stage imprint process included the imprint forming with a rapid increase of imprint force and the unloading stage combined with the adhesion stage. The results show that the imprint force and adhesion rapidly increase with decreasing taper angle and increasing imprint depth. The magnitude of the maximum imprint force and the time at which this maximum occurs are proportional to the imprint depth, but independent of the taper angle. In a comparison of the imprint mechanisms with a vertical imprint case, while high stress and strain regions are concentrated below the mold for vertical imprint, they also occur around the mold in the case of roller imprint. The regions were only concentrated on the substrate atoms underneath the mold in vertical imprint. Plastic flow increased with increasing imprint temperature
Certified Robustness of Quantum Classifiers against Adversarial Examples through Quantum Noise
Recently, quantum classifiers have been known to be vulnerable to adversarial
attacks, where quantum classifiers are fooled by imperceptible noises to have
misclassification. In this paper, we propose one first theoretical study that
utilizing the added quantum random rotation noise can improve the robustness of
quantum classifiers against adversarial attacks. We connect the definition of
differential privacy and demonstrate the quantum classifier trained with the
natural presence of additive noise is differentially private. Lastly, we derive
a certified robustness bound to enable quantum classifiers to defend against
adversarial examples supported by experimental results.Comment: Submitted to IEEE ICASSP 202
Enhancing Therapeutic Efficacy of Cinnamon Essential Oil by Nanoemulsification for Intravaginal Treatment of Candida Vaginitis
Yi-Ting Lin,1 Wei-Chung Tsai,1 Hsueh-Yu Lu,1 Shih-Yuan Fang,1 Hsiang-Wen Chan,1 Chung-Hsiung Huang1,2 1Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan; 2Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, TaiwanCorrespondence: Chung-Hsiung Huang, Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan, Tel +886-2-2462-2192 ext. 5116, Email [email protected]: Due to its prevalence, recurrence, and the emergence of drug-resistance, Candida vaginitis significantly impacts the well-being of women. Although cinnamon essential oil (CEO) possesses antifungal activity, its hydrophobic properties limit its clinical application.Purpose: To overcome this challenge, a nanoemulsification technology was employed to prepare cinnamon essential oil-nanoemulsion (CEO@NE), and its therapeutic efficacy and action mechanism for Candida vaginitis was investigated in vivo and in vitro.Materials and Methods: CEO@NE, composed of 4% CEO, 78% distilled water, and 18% Tween 80, was prepared by ultrasonic nanoemulsification. The physical properties, anti-Candida activity, cytotoxicity, immunomodulatory potential and storage stability of CEO@NE were explored. Subsequently, the effect of intravaginal CEO@NE treatment on Candida vaginitis was investigated in mice. To comprehend the possible mechanism of CEO@NE, an analysis was conducted to ascertain the production of intracellular reactive oxygen species (ROS) in C. albicans.Results: CEO@NE, with the droplet size less than 100 nm and robust storage stability for up to 8 weeks, exhibited comparable anti-Candida activity with CEO. CEO@NE at the concentration lower than 400 Ī¼g/mL had no cytotoxic and immunomodulatory effects on murine splenocytes. Intravaginal treatment of CEO@NE (400 Ī¼g/mL, 20 Ī¼L/day/mouse for 5 consecutive days) curbed Candida colonization, ameliorated histopathological changes, and suppressed inflammatory cytokine production in mice intravaginally challenged with C. albicans. Notably, this treatment preserved the density of vaginal lactic acid bacteria (LAB) crucial for vaginal health. Co-culturing C. albicans with CEO@NE revealed concentration-dependent augmentation of intracellular ROS generation and ensuing cell death. In addition, co-culturing LPS-stimulated murine splenocytes with CEO@NE yielded a decrease in the generation of cytokines.Conclusion: This discovery provides insight into the conceivable antifungal and anti-inflammatory mechanisms of CEO@NE to tackle Candida vaginitis. CEO@NE offers a promising avenue to address the limitations of current treatments, providing novel strategy for treating Candida vaginitis.Keywords: anti-inflammation, Candida vaginitis, cinnamon essential oil, nanoemulsion, reactive oxygen specie
Radial Growth of Qilian Juniper on the Northeast Tibetan Plateau and Potential Climate Associations
There is controversy regarding the limiting climatic factor for tree radial growth at the alpine treeline on the northeastern Tibetan Plateau. In this study, we collected 594 increment cores from 331 trees, grouped within four altitude belts spanning the range 3550 to 4020 m.a.s.l. on a single hillside. We have developed four equivalent ring-width chronologies and shown that there are no significant differences in their growth-climate responses during 1956 to 2011 or in their longer-term growth patterns during the period AD 1110ā2011. The main climate influence on radial growth is shown to be precipitation variability. Missing ring analysis shows that tree radial growth at the uppermost treeline location is more sensitive to climate variation than that at other elevations, and poor tree radial growth is particularly linked to the occurrence of serious drought events. Hence water limitation, rather than temperature stress, plays the pivotal role in controlling the radial growth of Sabina przewalskii Kom. at the treeline in this region. This finding contradicts any generalisation that tree-ring chronologies from high-elevation treeline environments are mostly indicators of temperature changes
Joint longitudinal and survival-cure models in tumour xenograft experiments
In tumour xenograft experiments, treatment regimens are administered, and the tumour volume of each individual is measured repeatedly over time. Survival data are recorded because of the death of some individuals during the observation period. Also, cure data are observed because of a portion of individuals who are completely cured in the experiments. When modelling these data, certain constraints have to be imposed on the parameters in the models to account for the intrinsic growth of the tumour in the absence of treatment. Also, the likely inherent association of longitudinal and survivalācure data has to be taken into account in order to obtain unbiased estimators of parameters. In this paper, we propose such models for the joint modelling of longitudinal and survivalācure data arising in xenograft experiments. Estimators of parameters in the joint models are obtained using a Markov chain Monte Carlo approach. Real data analysis of a xenograft experiment is carried out, and simulation studies are also conducted, showing that the proposed joint modelling approach outperforms the separate modelling methods in the sense of mean squared errors
- ā¦