156 research outputs found

    Quasiparticle scattering in two dimensional helical liquid

    Full text link
    We study the quasiparticle interference (QPI) patterns caused by scattering off nonmagnetic, magnetic point impurities, and edge impurities, separately, in a two dimensional helical liquid, which describes the surface states of a topological insulator. The unique features associated with hexagonal warping effects are identified in the QPI patterns of charge density with nonmagnetic impurities and spin density with magnetic impurities. The symmetry properties of the QPI patterns can be used to determine the symmetry of microscopic models. The Friedel oscillation is calculated for edge impurities and the decay of the oscillation is not universal, strongly depending on Fermi energy. Some discrepancies between our theoretical results and current experimental observations are discussed.Comment: 12 pages, appendices added. Accepted for publication in Physical Review B (submitted, October 2009

    Quasiparticle Scattering Interference in Superconducting Iron-pnictides

    Full text link
    Using both two orbital and five orbital models, we investigate the quasiparticle interference (QPI) patterns in the superconducting (SC) state of iron-based superconductors. We compare the results for nonmagnetic and magnetic impurities in sign-changed s-wave cos(kx)cos(ky)\cos(k_x)\cdot\cos(k_y) and sign-unchanged cos(kx)cos(ky)|\cos(k_x)\cdot\cos(k_y)| SC states. While the patterns strongly depend on the chosen band structures, the sensitivity of peaks around (±π,0)(\pm\pi,0) and (0,±π)(0,\pm\pi) wavevectors on magnetic or non-magnetic impurity, and sign change or sign unchanged SC orders is common in two models. Our results strongly suggest that QPI may provide direct information of band structures and evidence of the pairing symmetry in the SC states.Comment: 12 pages, 16 figure

    Picocyanobacteria and deep-ocean fluorescent dissolved organic matter share similar optical properties

    Get PDF
    Marine chromophoric dissolved organic matter (CDOM) and its related fluorescent components (FDOM), which are widely distributed but highly photobleached in the surface ocean, are critical in regulating light attenuation in the ocean. However, the origins of marine FDOM are still under investigation. Here we show that cultured picocyanobacteria, Synechococcus and Prochlorococcus, release FDOM that closely match the typical fluorescent signals found in oceanic environments. Picocyanobacterial FDOM also shows comparable apparent fluorescent quantum yields and undergoes similar photo-degradation behaviour when compared with deep-ocean FDOM, further strengthening the similarity between them. Ultrahigh-resolution mass spectrometry (MS) and nuclear magnetic resonance spectroscopy reveal abundant nitrogen-containing compounds in Synechococcus DOM, which may originate from degradation products of the fluorescent phycobilin pigments. Given the importance of picocyanobacteria in the global carbon cycle, our results indicate that picocyanobacteria are likely to be important sources of marine autochthonous FDOM, which may accumulate in the deep ocean

    Identification of thioredoxin-1 as a biomarker of lung cancer and evaluation of its prognostic value based on bioinformatics analysis

    Get PDF
    BackgroundThioredoxin-1 (TXN), a redox balance factor, plays an essential role in oxidative stress and has been shown to act as a potential contributor to various cancers. This study evaluated the role of TXN in lung cancer by bioinformatics analyses.Materials and methodsGenes differentially expressed in lung cancer and oxidative stress related genes were obtained from The Cancer Genome Atlas, Gene Expression Omnibus and GeneCards databases. Following identification of TXN as an optimal differentially expressed gene by bioinformatics, the prognostic value of TXN in lung cancer was evaluated by univariate/multivariate Cox regression and Kaplan–Meier survival analyses, with validation by receiver operation characteristic curve analysis. The association between TXN expression and lung cancer was verified by immunohistochemical analysis of the Human Protein Atlas database, as well as by western blotting and qPCR. Cell proliferation was determined by cell counting kit-8 after changing TXN expression using lentiviral transfection.ResultsTwenty differentially expressed oxidative stress genes were identified. Differential expression analysis identified five genes (CASP3, CAT, TXN, GSR, and HSPA4) and Kaplan–Meier survival analysis identified four genes (IL-6, CYCS, TXN, and BCL2) that differed significantly in lung cancer and normal lung tissue, indicating that TXN was an optimal differentially expressed gene. Multivariate Cox regression analysis showed that T stage (T3/T4), N stage (N2/N3), curative effect (progressive diseases) and high TXN expression were associated with poor survival, although high TXN expression was poorly predictive of overall survival. TXN was highly expressed in lung cancer tissues and cells. Knockdown of TXN suppressed cell proliferation, while overexpression of TXN enhanced cell proliferation.ConclusionHigh expression of TXN plays an important role in lung cancer development and prognosis. Because it is a prospective prognostic factor, targeting TXN may have clinical benefits in the treatment of lung cancer

    Measurement of Interphase Forces based on Dual-modality ERT/DP Sensor in Horizontal Two-phase Flow Gas-water

    Get PDF
    In order to better understand the mechanisms of two-phase flow and the prevailing flow regimes in horizontal pipelines, the evaluation of interphase forces is paramount. This study develops a method to quantitatively estimate the interphase force in two-phase gas-water flow in horizontal pipeline. The electrical resistance tomography technology is used to measure the void fraction, while the differential pressure perpendicular to the horizontal pipe is measured in different flow patterns via a Differential Pressure sensor. The inner pipe diameter is 50 mm, the water flow range from 3.26 m3/h to 7.36 m3/h, the gas flowrate range from 1 to 60 l/min, which covered a range of flow patterns, the absolute pressure range from0.07 MPa to 0.12 MPa. The relationship between the differential pressure drop and interphase force is established, and the effects of these forces on the flow are analyzed. Experimental results indicate that the dual-modality measurement system was successfully provided a quantitative evaluation of inter-phase forces in two-phase horizontal gas-water flow

    Longan seed and mangosteen skin based activated carbons for the removal of Pb(II) ions and rhodamine-B dye from aqueous solutions

    Get PDF
    Agricultural biomass wastes of longan seed and mangosteen skin were collected as precursors to prepare activated carbons (LS-AC-5 and MS-AC-5, respectively) through carbonization at medium temperature and KOH activation at high temperature. Their pore structures, structural properties and surface morphologies were characterized by X-ray diffractometer, Brunauer–Emmett–Teller surface measurement system, and scanning electron microscopy, respectively. Effects of contact time and pH on adsorption performances of samples were investigated by removal of Pb(II) ions and Rhodamine-b from aqueous solutions. Experimental adsorption isotherms of Rhodamine-b and Pb(II) ions on LS-AC-5 and MS-AC-5 fitted well with the Langmuir model. Results further showed that MS-AC-5 exhibited a larger surface area of 2960.56 m2/g and larger portions of micropores and mesopores (pore volume of 1.77 cm3/g) than LS-AC-5 (surface area: 2728.98 m2/g; pore volume: 1.39 cm3/g). Maximum monolayer adsorption capabilities of 1265.82 and 117.65 mg/g for Rhodamine-b and Pb(II) ions on MS-AC-5 were higher than those on LS-AC-5 (1000.20 and 107.53 mg/g), respectively

    Multiple trade-offs between maximizing yield and minimizing greenhouse gas production in Chinese rice croplands

    Get PDF
    Globally, paddy fields are a major anthropogenic source of greenhouse gas (GHG) emissions from agriculture. There is, however, limited understanding of relationships between GHG production with fertilizer management, rice varieties, and soil variables. This information is crucial for minimizing the climatic impacts of rice agriculture. Here, we examined the relationships between soil GHG production and management practices throughout China. The current doses of N-fertilizer (73-272 kg ha−1) were negatively correlated with rice yield and with CO2 or CH4 production and positively correlated with N2O production, thus suggesting N-overfertilization. Impacts on soil traits such as decreasing pH or the availabilities of other nutrients could be underlying these relationships. Rice yield was highest, and GHG production was lowest at sites using intermediate levels of P- and K-fertilization. CO2 and CH4 production and emissions were positively related with soil water content. The yield was higher, and N2O productions were lower at the sites with japonica rice. Our results strongly suggest that current high doses of N-fertilizers could be reduced to thus avoid the negative effects of excessive N input on GHG production without any immediate risk of rice production loss. Current intermediate doses of P- and K-fertilization should be adopted across China to further improve rice production without the risk of GHG emissions. The use of different rice varieties and strategies of water management should be reexamined in relation to crop production and GHG mitigation

    CTAB-Assisted Hydrothermal Synthesis of Bi 2

    Get PDF
    Pyrochlore-type Bi2Sn2O7 (BSO) nanoparticles have been prepared by a hydrothermal method assisted with a cationic surfactant cetyltrimethylammonium bromide (CTAB). These BSO products were characterized by powder X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), and UV-visible diffuse reflectance spectroscopy (DRS). The results indicated that CTAB alters the surface parameters and the morphology and enhances the photoinduced charge separation rate of BSO. The photocatalytic degradation test using rhodamine B as a model pollutant showed that the photocatalytic activity of the BSO assisted with CTAB was two times that of the reference BSO. Close investigation revealed that the size, the band gap, the structure, and the existence of impurity level played an important role in the photocatalytic activities

    Diversification of flowering plants in space and time

    Get PDF
    The rapid diversification and high species richness of flowering plants is regarded as ‘Darwin’s second abominable mystery’. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 flowering plant genera, we describe the diversification dynamics of angiosperms through space and time. Our analyses show that diversification rates increased throughout the early Cretaceous and then slightly decreased or remained mostly stable until the end of the Cretaceous–Paleogene mass extinction event 66 million years ago. After that, diversification rates increased again towards the present. Younger genera with high diversification rates dominate temperate and dryland regions, whereas old genera with low diversification dominate the tropics. This leads to a negative correlation between spatial patterns of diversification and genus diversity. Our findings suggest that global changes since the Cenozoic shaped the patterns of flowering plant diversity and support an emerging consensus that diversification rates are higher outside the tropics

    Myeloid Malignancies with Chromosome 5q Deletions Acquire a Dependency on an Intrachromosomal NF-κB Gene Network

    Get PDF
    SummaryChromosome 5q deletions (del[5q]) are common in high-risk (HR) myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML); however, the gene regulatory networks that sustain these aggressive diseases are unknown. Reduced miR-146a expression in del(5q) HR MDS/AML and miR-146a−/− hematopoietic stem/progenitor cells (HSPCs) results in TRAF6/NF-κB activation. Increased survival and proliferation of HSPCs from miR-146alow HR MDS/AML is sustained by a neighboring haploid gene, SQSTM1 (p62), expressed from the intact 5q allele. Overexpression of p62 from the intact allele occurs through NF-κB-dependent feedforward signaling mediated by miR-146a deficiency. p62 is necessary for TRAF6-mediated NF-κB signaling, as disrupting the p62-TRAF6 signaling complex results in cell-cycle arrest and apoptosis of MDS/AML cells. Thus, del(5q) HR MDS/AML employs an intrachromosomal gene network involving loss of miR-146a and haploid overexpression of p62 via NF-κB to sustain TRAF6/NF-κB signaling for cell survival and proliferation. Interfering with the p62-TRAF6 signaling complex represents a therapeutic option in miR-146a-deficient and aggressive del(5q) MDS/AML
    corecore