22,136 research outputs found

    On the way from matter-dominated era to dark energy universe

    Get PDF
    We develop the general program of the unification of matter-dominated era with acceleration epoch for scalar-tensor theory or dark fluid. The general reconstruction of single scalar-tensor theory is fulfilled. The explicit form of scalar potential for which the theory admits matter-dominated era, transition to acceleration and (asymptotically deSitter) acceleration epoch consistent with WMAP data is found. The interrelation of the epochs of deceleration-acceleration transition and matter dominance-dark energy transition for dark fluids with general EOS is investigated. We give several examples of such models with explicit EOS (using redshift parametrization) where matter-dark energy domination transition may precede the deceleration-acceleration transition. As some by-product, the reconstruction scheme is applied to scalar-tensor theory to define the scalar potentials which may produce the dark matter effect. The obtained modification of Newton potential may explain the rotation curves of galaxies.Comment: LaTeX 12 pages, 1 figure, extended version to appear in PR

    The Consistent Result of Cosmological Constant From Quantum Cosmology and Inflation with Born-Infeld Scalar Field

    Full text link
    The Quantum cosmology with Born-Infeld(B-I) type scalar field is considered. In the extreme limits of small cosmological scale factor the wave function of the universe can also be obtained by applying the methods developed by Hartle-Hawking(H-H) and Vilenkin. H-H wave function predicts that most Probable cosmological constant Λ\Lambda equals to 1η\frac{1}{\eta}(12η\frac{1}{2\eta} equals to the maximum of the kinetic energy of scalar field). It is different from the original results(Λ=0\Lambda=0) in cosmological constant obtained by Hartle-Hawking. The Vilenkin wave function predicts a nucleating unverse with largest possible cosmological constant and it is larger than 1/η1/\eta. The conclusions have been nicely to reconcile with cosmic inflation. We investigate the inflation model with B-I type scalar field, and find that η\eta depends on the amplitude of tensor perturbation δh\delta_h, with the form 1ηm212π[(9δΦ2Nδh2)21].\frac{1}{\eta}\simeq \frac{m^2}{12\pi[(\frac{9\delta_{\Phi}^2}{N \delta_h^2})^2-1]}. The vacuum energy in inflation epoch depends on the tensor-to-scalar ratio δhδΦ\frac{\delta_h}{\delta_{\Phi}}. The amplitude of the tensor perturbation δh{\delta_{h}} can, in principle, be large enough to be discovered. However, it is only on the border of detectability in future experiments. If it has been observed in future, this is very interesting to determine the vacuum energy in inflation epoch.Comment: 12 pages, one figure, references added, accepted by European Physical Journal

    Cosmology in Nonlinear Born-Infeld Scalar Field Theory With Negative Potentials

    Full text link
    The cosmological evolution in Nonlinear Born-Infeld(hereafter NLBI) scalar field theory with negative potentials was investigated. The cosmological solutions in some important evolutive epoches were obtained. The different evolutional behaviors between NLBI and linear(canonical) scalar field theory have been presented. A notable characteristic is that NLBI scalar field behaves as ordinary matter nearly the singularity while the linear scalar field behaves as "stiff" matter. We find that in order to accommodate current observational accelerating expanding universe the value of potential parameters m|m| and V0|V_0| must have an {\it upper bound}. We compare different cosmological evolutions for different potential parameters m,V0m, V_0.Comment: 18 pages, 18 figures, some references added, revised version for Int.J.Mod.Phys.A, appeared in Int.J.Mod.Phys.

    Evidence for multiple impurity bands in sodium-doped silicon MOSFETs

    Full text link
    We report measurements of the temperature-dependent conductivity in a silicon metal-oxide-semiconductor field-effect transistor that contains sodium impurities in the oxide layer. We explain the variation of conductivity in terms of Coulomb interactions that are partially screened by the proximity of the metal gate. The study of the conductivity exponential prefactor and the localization length as a function of gate voltage have allowed us to determine the electronic density of states and has provided arguments for the presence of two distinct bands and a soft gap at low temperature.Comment: 4 pages; 5 figures; Published in PRB Rapid-Communication

    EventCap: Monocular 3D Capture of High-Speed Human Motions using an Event Camera

    No full text
    The high frame rate is a critical requirement for capturing fast human motions. In this setting, existing markerless image-based methods are constrained by the lighting requirement, the high data bandwidth and the consequent high computation overhead. In this paper, we propose EventCap --- the first approach for 3D capturing of high-speed human motions using a single event camera. Our method combines model-based optimization and CNN-based human pose detection to capture high-frequency motion details and to reduce the drifting in the tracking. As a result, we can capture fast motions at millisecond resolution with significantly higher data efficiency than using high frame rate videos. Experiments on our new event-based fast human motion dataset demonstrate the effectiveness and accuracy of our method, as well as its robustness to challenging lighting conditions

    Effects of Contrarians in the Minority Game

    Full text link
    We study the effects of the presence of contrarians in an agent-based model of competing populations. Contrarians are common in societies. These contrarians are agents who deliberately prefer to hold an opinion that is contrary to the prevailing idea of the commons or normal agents. Contrarians are introduced within the context of the Minority Game (MG), which is a binary model for an evolving and adaptive population of agents competing for a limited resource. Results of numerical simulations reveal that the average success rate among the agents depends non-monotonically on the fraction aca_{c} of contrarians. For small aca_{c}, the contrarians systematically outperform the normal agents by avoiding the crowd effect and enhance the overall success rate. For high aca_{c}, the anti-persistent nature of the MG is disturbed and the few normal agents outperform the contrarians. Qualitative discussion and analytic results for the small aca_{c} and high aca_{c} regimes are also presented, and the crossover behavior between the two regimes is discussed.Comment: revtex, 11 pages, 4 figure

    {EventCap}: {M}onocular {3D} Capture of High-Speed Human Motions Using an Event Camera

    Get PDF
    corecore