34,737 research outputs found

    Towards a Systematic Framework for the Modelling of the Allocation of Carbon Dioxide Emission Quotas in China

    Get PDF
    The needs for effectively controlling carbon dioxide emissions and properly allocating carbon dioxide emission permits or allowances in China have never been so great. In this paper, a systematic multi-agent-based framework for the modelling and analysis of the allocation of carbon dioxide emission quotas in China is proposed. A carbon trading market model as the core of the activities of allocation management is constructed and discussed. In addition, examples of the modelling and simulation work are presented

    Economical quantum cloning in any dimension

    Full text link
    The possibility of cloning a d-dimensional quantum system without an ancilla is explored, extending on the economical phase-covariant cloning machine found in [Phys. Rev. A {\bf 60}, 2764 (1999)] for qubits. We prove the impossibility of constructing an economical version of the optimal universal cloning machine in any dimension. We also show, using an ansatz on the generic form of cloning machines, that the d-dimensional phase-covariant cloner, which optimally clones all uniform superpositions, can be realized economically only in dimension d=2. The used ansatz is supported by numerical evidence up to d=7. An economical phase-covariant cloner can nevertheless be constructed for d>2, albeit with a lower fidelity than that of the optimal cloner requiring an ancilla. Finally, using again an ansatz on cloning machines, we show that an economical version of the Fourier-covariant cloner, which optimally clones the computational basis and its Fourier transform, is also possible only in dimension d=2.Comment: 8 pages RevTe

    Effect of intensive melt shearing on the formation of Fe-containing intermetallics in LM24 Al-alloy

    Get PDF
    Fe is one of the inevitable and detrimental impurities in aluminium alloys that degrade the mechanical performance of castings. In the present work, intensive melt shearing has been demonstrated to modify the morphology of Fe-containing intermetallic compounds by promoting the formation of compact α-Al(Fe,Mn)Si at the expense of needle-shaped ÎČ-AlFeSi, leading to an improved mechanical properties of LM24 alloy processed by MC-HPDC process. The promotion of the formation of α -Al(Fe, Mn)Si phase is resulted from the enhanced nucleation on the well dispersed MgAl 2O 4 particles in the melt. The Fe tolerance of LM24 alloy can be effectively improved by combining Mn alloying and intensive melt shearing

    Counting statistics of tunneling through a single molecule: effect of distortion and displacement of vibrational potential surface

    Full text link
    We analyze the effects of a distortion of the nuclear potential of a molecular quantum dot (QD), as well as a shift of its equilibrium position, on nonequilibrium-vibration-assisted tunneling through the QD with a single level (ϔd\epsilon_d) coupled to the vibrational mode. For this purpose, we derive an explicit analytical expression for the Franck-Condon (FC) factor for a displaced-distorted oscillator surface of the molecule and establish rate equations in the joint electron-phonon representation to examine the current-voltage characteristics and zero-frequency shot noise, and skewness as well. Our numerical analyses shows that the distortion has two important effects. The first one is that it breaks the symmetry between the excitation spectra of the charge states, leading to asymmetric tunneling properties with respect to ϔd>0\epsilon_d>0 and ϔd<0\epsilon_d<0. Secondly, distortion (frequency change of the oscillator) significantly changes the voltage-activated cascaded transition mechanism, and consequently gives rise to a different nonequilibrium vibrational distribution from that of the case without distortion. Taken in conjunction with strongly modified FC factors due to distortion, this results in some new transport features: the appearance of strong NDC even for a single-level QD with symmetric tunnel couplings; a giant Fano factor even for a molecule with an extremely weak electron-phonon interaction; and enhanced skewness that can have a large negative value under certain conditions.Comment: 29 pages, 11 figures, published versio

    Formation of Long Single Quantum Dots in High Quality InSb Nanowires Grown by Molecular Beam Epitaxy

    Full text link
    We report on realization and transport spectroscopy study of single quantum dots (QDs) made from InSb nanowires grown by molecular beam epitaxy (MBE). The nanowires employed are 50-80 nm in diameter and the QDs are defined in the nanowires between the source and drain contacts on a Si/SiO2_2 substrate. We show that highly tunable QD devices can be realized with the MBE-grown InSb nanowires and the gate-to-dot capacitance extracted in the many-electron regimes is scaled linearly with the longitudinal dot size, demonstrating that the devices are of single InSb nanowire QDs even with a longitudinal size of ~700 nm. In the few-electron regime, the quantum levels in the QDs are resolved and the Land\'e g-factors extracted for the quantum levels from the magnetotransport measurements are found to be strongly level-dependent and fluctuated in a range of 18-48. A spin-orbit coupling strength is extracted from the magnetic field evolutions of a ground state and its neighboring excited state in an InSb nanowire QD and is on the order of ~300 Ό\mueV. Our results establish that the MBE-grown InSb nanowires are of high crystal quality and are promising for the use in constructing novel quantum devices, such as entangled spin qubits, one-dimensional Wigner crystals and topological quantum computing devices.Comment: 19 pages, 5 figure

    PSS32 Predictors of Biologic Treatment in Psoriasis Population

    Get PDF

    Modeling GRB 050904: Autopsy of a Massive Stellar Explosion at z=6.29

    Get PDF
    GRB 050904 at redshift z=6.29, discovered and observed by Swift and with spectroscopic redshift from the Subaru telescope, is the first gamma-ray burst to be identified from beyond the epoch of reionization. Since the progenitors of long gamma-ray bursts have been identified as massive stars, this event offers a unique opportunity to investigate star formation environments at this epoch. Apart from its record redshift, the burst is remarkable in two respects: first, it exhibits fast-evolving X-ray and optical flares that peak simultaneously at t~470 s in the observer frame, and may thus originate in the same emission region; and second, its afterglow exhibits an accelerated decay in the near-infrared (NIR) from t~10^4 s to t~3 10^4 s after the burst, coincident with repeated and energetic X-ray flaring activity. We make a complete analysis of available X-ray, NIR, and radio observations, utilizing afterglow models that incorporate a range of physical effects not previously considered for this or any other GRB afterglow, and quantifying our model uncertainties in detail via Markov Chain Monte Carlo analysis. In the process, we explore the possibility that the early optical and X-ray flare is due to synchrotron and inverse Compton emission from the reverse shock regions of the outflow. We suggest that the period of accelerated decay in the NIR may be due to suppression of synchrotron radiation by inverse Compton interaction of X-ray flare photons with electrons in the forward shock; a subsequent interval of slow decay would then be due to a progressive decline in this suppression. The range of acceptable models demonstrates that the kinetic energy and circumburst density of GRB 050904 are well above the typical values found for low-redshift GRBs.Comment: 45 pages, 7 figures, and ApJ accepted. Revised version, minor modifications and 1 extra figur

    Overcoming the Circular Problem for \gamma-ray Bursts in Cosmological Global Fitting Analysis

    Full text link
    Due to the lack of low redshift long Gamma-Ray Bursts (GRBs), the circular problem has been a severe obstacle for using GRBs as cosmological candles. In this paper, we present a new method to deal with such a problem in MCMC global fitting analysis. Assuming that a certain type of correlations between different observables exists in a subsample of GRBs, for the parameters involved in the correlation relation, we treat them as free parameters and determine them simultaneously with cosmological parameters through MCMC analysis on GRB data together with other observational data. Then the circular problem is naturally eliminated in this procedure. We take the Ghirlanda relation as an example while keeping in mind the debate about its physical validity. Together with SNe Ia, WMAP and SDSS data, we include 27 GRBs with the reported Ghirlanda relation in our study, and perform MCMC global fitting. We consider the Λ\LambdaCDM model and dynamical dark energy models. In each case, in addition to the constraints on the relevant cosmological parameters, we obtain the best fit values as well as the distributions of the correlation parameters AA and CC. We find that the observational data sets other than GRBs can affect AA and CC considerably through their degeneracies with the cosmological parameters. The results on AA and CC for different cosmological models are in well agreement within 1σ1\sigma range. The best fit value of AA in all models being analyzed is A∌1.53A\sim 1.53 with σ∌0.08\sigma \sim 0.08. For CC, we have the best value in the range of 0.94−0.980.94-0.98 with σ∌0.1\sigma\sim 0.1. It is also noted that the distributions of AA and CC are generally broader than the priors used in many studies in literature. (Abriged)Comment: 9 pages, 2 figures, 2 tables, Accepted for publication in Ap
    • 

    corecore