13 research outputs found
Anomalous stopping of laser-accelerated intense proton beam in dense ionized matter
Ultrahigh-intensity lasers (10-10W/cm) have opened up new
perspectives in many fields of research and application [1-5]. By irradiating a
thin foil, an ultrahigh accelerating field (10 V/m) can be formed and
multi-MeV ions with unprecedentedly high intensity (10A/cm) in short
time scale (ps) are produced [6-14]. Such beams provide new options in
radiography [15], high-yield neutron sources [16], high-energy-density-matter
generation [17], and ion fast ignition [18,19]. An accurate understanding of
the nonlinear behavior of beam transport in matter is crucial for all these
applications. We report here the first experimental evidence of anomalous
stopping of a laser-generated high-current proton beam in well-characterized
dense ionized matter. The observed stopping power is one order of magnitude
higher than single-particle slowing-down theory predictions. We attribute this
phenomenon to collective effects where the intense beam drives an decelerating
electric field approaching 1GV/m in the dense ionized matter. This finding will
have considerable impact on the future path to inertial fusion energy.Comment: 8 pages, 4 figure
Energy loss enhancement of very intense proton beams in dense matter due to the beam-density effect
Thoroughly understanding the transport and energy loss of intense ion beams
in dense matter is essential for high-energy-density physics and inertial
confinement fusion. Here, we report a stopping power experiment with a
high-intensity laser-driven proton beam in cold, dense matter. The measured
energy loss is one order of magnitude higher than the expectation of individual
particle stopping models. We attribute this finding to the proximity of beam
ions to each other, which is usually insignificant for relatively-low-current
beams from classical accelerators. The ionization of the cold target by the
intense ion beam is important for the stopping power calculation and has been
considered using proper ionization cross section data. Final theoretical values
agree well with the experimental results. Additionally, we extend the stopping
power calculation for intense ion beams to plasma scenario based on Ohm's law.
Both the proximity- and the Ohmic effect can enhance the energy loss of intense
beams in dense matter, which are also summarized as the beam-density effect.
This finding is useful for the stopping power estimation of intense beams and
significant to fast ignition fusion driven by intense ion beams
Target density effects on charge tansfer of laser-accelerated carbon ions in dense plasma
We report on charge state measurements of laser-accelerated carbon ions in
the energy range of several MeV penetrating a dense partially ionized plasma.
The plasma was generated by irradiation of a foam target with laser-induced
hohlraum radiation in the soft X-ray regime. We used the tri-cellulose acetate
(CHO) foam of 2 mg/cm density, and -mm interaction
length as target material. This kind of plasma is advantageous for
high-precision measurements, due to good uniformity and long lifetime compared
to the ion pulse length and the interaction duration. The plasma parameters
were diagnosed to be T=17 eV and n=4 10 cm.
The average charge states passing through the plasma were observed to be higher
than those predicted by the commonly-used semiempirical formula. Through
solving the rate equations, we attribute the enhancement to the target density
effects which will increase the ionization rates on one hand and reduce the
electron capture rates on the other hand. In previsous measurement with
partially ionized plasma from gas discharge and z-pinch to laser direct
irradiation, no target density effects were ever demonstrated. For the first
time, we were able to experimentally prove that target density effects start to
play a significant role in plasma near the critical density of Nd-Glass laser
radiation. The finding is important for heavy ion beam driven high energy
density physics and fast ignitions.Comment: 7 pages, 4 figures, 35 conference
Collision strengths for transitions of Ni XXI
In this paper, we use Dirac R-matrix theory to calculate the collision strengths for
electron impact excitation of Ni XXI with the Dirac atomic R-matrix code (DARC), which
includes contributions of resonances, channel coupling, and relativity. A DARC calculation
has been performed for transitions among 86 levels of (1s2)
2s22p4,
2s2p5, 2p6 and
2s22p33l
(l = 0, 1, 2) configurations of Ni XXI. The GRASP code has been adopted
for the description of target. A comparison is made with the results of Bhatia et al. for
the collision strengths of five incident energies, 85, 170, 255, 340, and 425 Ryd, which
use distorted wave calculations that do not include channel coupling. Effective collision
strengths are calculated by averaging collision strengths over a Maxwellian velocity
distribution. The accuracy of our calculations is assessed
Relativistic R-matrix studies of photoionisation processes of Sc
The photoionisation processes of the ground state and two metastable states of
Sc2+ are
investigated by Dirac R-matrix theory, where the comparison of
photoionisation cross sections are made between our results and other experimental and
theoretical values. The photoionisation cross sections of Sc2+ induced by different
transitions are also given and the contribution of the different partial wave for the
photoionisation cross section of Sc2+ is discussed. The eigenphase sum which reflects
resonance behavior is calculated. The resonance energies obtained coincide well with the
theoretical and experimental data. It is worth noting that the relativistic effects should
be taken into account for the photoionisation processes
Visualization 1: Negative refraction in molybdenum disulfide
Refraction angle as a function of incident angle Originally published in Optics Express on 24 August 2015 (oe-23-17-22024
The Generation of Equal-Intensity and Multi-Focus Optical Vortices by a Composite Spiral Zone Plate
We propose a new vortex lens for producing multiple focused coaxial vortices with approximately equal intensities along the optical axis, termed equal-intensity multi-focus composite spiral zone plates (EMCSZPs). In this typical methodology, two concentric conventional spiral zone plates (SZPs) of different focal lengths were composited together and the alternate transparent and opaque zones were arranged with specific m-bonacci sequence. Based on the Fresnel–Kirchhoff diffraction theory, the focusing properties of the EMCSZPs were calculated in detail and the corresponding demonstration experiment was been carried out to verify our proposal. The investigations indicate that the EMCSZPs indeed exhibit superior performance, which accords well with our physical design. In addition, the topological charges (TCs) of the multi-focus vortices can be flexibly selected and controlled by optimizing the parameters of the zone plates. These findings which were demonstrated by the performed experiment may open new avenues towards improving the performance of biomedical imaging, quantum computation and optical manipulation
Enhanced Thomson scattering x-ray sources with flying focus laser pulse
X-ray source based on the Thomson scattering of laser interacting with energetic electron beams features high photon energy, small spot size, and good collimation. However, the photon number is insufficient for practical application because of the small cross section of the Thomson scattering. To solve this problem, here, we replace a traditional Gaussian laser pulse with a flying focus laser pulse to extend interaction length and restrain nonlinear effects. Simulation results show that the scattered photon number can be increased by about 25 and 2 times for high and low energy lasers, respectively. In particular, a 1010 photon number can be generated with a 10 J flying focus laser pulse, and the energy spread can also be greatly reduced for high energy laser, from a broad spectrum to a monoenergetic peak. Combining these two advantages, the peak spectrum brightness of x ray is 3 × 108 photons/keV at 240 keV, which is about three orders of magnitude more than the traditional case