35 research outputs found

    Urocanic acid as a novel scaffold for next-gen nature-inspired sunscreens: II. Time-resolved spectroscopy under solution conditions †

    Get PDF
    In recent years the use of synthetic UV filters in commercial skincare formulations has come under considerable scrutiny. Urocanic acid is a naturally occurring UV filter that could serve as a scaffold for developing next-generation biomimetic UV filters. We have carried out time-resolved electronic and vibrational absorption studies on urocanic acid and modified variants in various solvents on timescales spanning eighteen orders of magnitude; from femtoseconds to hours. In combination with quantum chemical calculations these provide vital insight into the photochemical and photophysical properties of urocanic acid and how these are tuned by substitutions and solvents. Moreover, they solve the hitherto conundrum of the wavelength dependence of the photochemistry of trans-urocanic acid in an aqueous environment. Crucially, these studies – together with the accompanying article that reports high-resolution laser spectroscopic studies performed under isolated gas-phase conditions (https://doi.org/10.1039/D4CP02087A) open novel avenues for a rational design of urocanic acid-based UV filters

    Extracellular matrix remodeling in the tumor immunity

    Get PDF
    The extracellular matrix (ECM) is a significant constituent of tumors, fulfilling various essential functions such as providing mechanical support, influencing the microenvironment, and serving as a reservoir for signaling molecules. The abundance and degree of cross-linking of ECM components are critical determinants of tissue stiffness. In the process of tumorigenesis, the interaction between ECM and immune cells within the tumor microenvironment (TME) frequently leads to ECM stiffness, thereby disrupting normal mechanotransduction and promoting malignant progression. Therefore, acquiring a thorough comprehension of the dysregulation of ECM within the TME would significantly aid in the identification of potential therapeutic targets for cancer treatment. In this regard, we have compiled a comprehensive summary encompassing the following aspects: (1) the principal components of ECM and their roles in malignant conditions; (2) the intricate interaction between ECM and immune cells within the TME; and (3) the pivotal regulators governing the onco-immune response in ECM

    Characterization, Genomic Organization, Abundance, and Chromosomal Distribution of Ty1-copia Retrotransposons in Erianthus arundinaceus

    Get PDF
    Erianthus arundinaceus is an important wild species of the genus Saccharum with many valuable traits. However, the composition and structure of its genome are largely unknown, which have hindered its utilization in sugarcane breeding and evolutionary research. Retrotransposons constitute an appreciable fraction of plant genomes and may have played a significant role in the evolution and sequence organization of genomes. In the current study, we investigate the phylogenetic diversity and genomic abundance of Ty1-copia retrotransposons for the first time and inspect their chromosomal distribution patterns in E. arundinaceus. In total, 70 Ty1-copia reverse transcriptase (RT) sequences with significant levels of heterogeneity were obtained. The phylogenetic analysis revealed these Ty1-copia retrotransposons were classified into four distinct evolutionary lineages (Tork/TAR, Tork/Angela, Retrofit/Ale, and Sire/Maximus). Dot-blot analysis showed estimated the total copy number of Ty1-copia retrotransposons to be about 4.5 Ă— 103 in the E. arundinaceus genome, indicating they were a significant component. Fluorescence in situ hybridization revealed that Ty1-copia retrotransposons from the four lineages had strikingly similar patterns of chromosomal enrichment, being exclusively enriched in the subterminal heterochromatic regions of most E. arundinaceus chromosomes. This is the first clear evidence of the presence of Ty1-copia retrotransposons in the subterminal heterochromatin of E. arundinaceus. Altogether, these results promote the understanding of the diversification of Ty1-copia retrotransposons and shed light on their chromosomal distribution patterns in E. arundinaceus

    Tailoring the optical and dynamic properties of iminothioindoxyl photoswitches through acidochromism

    Get PDF
    Multi-responsive functional molecules are key for obtaining user-defined control of the properties and functions of chemical and biological systems. In this respect, pH-responsive photochromes, whose switching can be directed with light and acid-base equilibria, have emerged as highly attractive molecular units. The challenge in their design comes from the need to accommodate application-defined boundary conditions for both light- and protonation-responsivity. Here we combine time-resolved spectroscopic studies, on time scales ranging from femtoseconds to seconds, with density functional theory (DFT) calculations to elucidate and apply the acidochromism of a recently designed iminothioindoxyl (ITI) photoswitch. We show that protonation of the thermally stable Z isomer leads to a strong batochromically-shifted absorption band, allowing for fast isomerization to the metastable E isomer with light in the 500-600 nm region. Theoretical studies of the reaction mechanism reveal the crucial role of the acid-base equilibrium which controls the populations of the protonated and neutral forms of the E isomer. Since the former is thermally stable, while the latter re-isomerizes on a millisecond time scale, we are able to modulate the half-life of ITIs over three orders of magnitude by shifting this equilibrium. Finally, stable bidirectional switching of protonated ITI with green and red light is demonstrated with a half-life in the range of tens of seconds. Altogether, we designed a new type of multi-responsive molecular switch in which protonation red-shifts the activation wavelength by over 100 nm and enables efficient tuning of the half-life in the millisecond-second range.</p

    Insight Understanding of Ultrathin Carbon-Deficient Molybdenum Carbide Catalytic Activity for CO<sub>2</sub> Conversion into Hydrocarbon Fuels

    No full text
    The catalytic reduction of carbon dioxide (CO2) to produce methane (CH4) as a hydrocarbon fuel has attracted extensive attention for renewable energy. In this study, we investigate ultrathin carbon-deficient molybdenum carbide (MoC0.66) as a catalyst for CO2 capture and conversion. Our findings indicate that MoC0.66 possesses remarkable catalytic activity for CO2 hydrogenation to CH4. Interestingly, unlike conventional catalysts, the limiting step of the MoC0.66 catalyst is determined by the release of *OH species during the CO2 reduction reaction (CO2RR). Increasing the temperature can improve the release of H2O and CH4 as well as the selectivity of the CO2RR. Moreover, the increase of temperature promotes the CO2RR on MoC0.66 by increasing the reaction rate, as evidenced by both simulation and experimental results. These results provide a way for the understanding of insight mechanisms for the CO2RR to energy-rich fuels at the atomic level and guide experimental applications of carbon-neutral reactions

    A Temperature Prediction Model for Flexible Electronic Devices Based on GA-BP Neural Network and Experimental Verification

    No full text
    The problem that the thermal safety of flexible electronic devices is difficult to evaluate in real time is addressed in this study by establishing a BP neural network (GA-BPNN) temperature prediction model based on genetic algorithm optimisation. The model uses a BP neural network to fit the functional relationship between the input condition and the steady-state temperature of the equipment and uses a genetic algorithm to optimise the parameter initialisation problem of the BP neural network. To overcome the challenge of the high cost of obtaining experimental data, finite element analysis software is used to simulate the temperature results of the equipment under different working conditions. The prediction variance of the GA-BPNN model does not exceed 0.57 °C and has good robustness, as the model is trained according to the simulation data. The study conducted thermal validation experiments on the temperature prediction model for this flexible electronic device. The device reached steady state after 1200 s of operation at rated power. The error between the predicted and experimental results was less than 0.9 °C, verifying the validity of the model’s predictions. Compared with traditional thermal simulation and experimental methods, this model can quickly predict the temperature with a certain accuracy and has outstanding advantages in computational efficiency and integrated application of hardware and software

    Hydrogen Evolution Reaction Property of Molybdenum Disulfide/Nickel Phosphide Hybrids in Alkaline Solution

    No full text
    The hydrogen evolution reaction (HER) property of molybdenum disulfide (MoS2) is undesirable because of the insufficient active edge sites and the poor conductivity. To enhance HER performance of MoS2, nickel phosphide (Ni2P) was combined with this catalyst and three MoS2/Ni2P hybrids (38 wt % Ni2P addition for MoS2/Ni2P-38, 50 wt % Ni2P addition for MoS2/Ni2P-50, and 58 wt % Ni2P addition for MoS2/Ni2P-58) were fabricated via a hydrothermal synthesis process. Morphologies, crystallinities, chemical components, specific surface areas, and HER properties of the fabricated MoS2/Ni2P samples in an alkaline electrolyte were characterized and tested. In addition, the insight into the HER properties of as-prepared catalysts were revealed by the density functional theory (DFT) calculation. Additionally, the stabilities of pure MoS2, Ni2P, and MoS2/Ni2P-50 samples were evaluated. The results show that the addition of Ni2P can enhance the HER property of the MoS2 catalyst. Although HER properties of the above-mentioned three MoS2/Ni2P hybrids are inferior to that of pure Ni2P, they are much higher than that of MoS2. Among as-prepared three hybrids, MoS2/Ni2P-50 exhibits the best HER performance, which may be due to its uniform morphology, large specific surface area, and excellent stability. The MoS2/Ni2P-50 hybrid shows a high cathodic current density (70 mA/cm2 at &minus;0.48 V), small Tafel slope (~58 mV/decade), and a low charge transfer resistance (0.83 k&Omega;&middot;cm2)

    Dynamic alterations in metabolomics and transcriptomics associated with intestinal fibrosis in a 2,4,6-trinitrobenzene sulfonic acid-induced murine model

    No full text
    Abstract Background & aims Intestinal fibrosis is a common and severe complication of inflammatory bowel disease without clear pathogenesis. Abnormal expression of host genes and metabolic perturbations might associate with the onset of intestinal fibrosis. In this study, we aimed to investigate the relationship between the development of intestinal fibrosis and the dynamic alterations in both fecal metabolites and host gene expression. Methods We induced intestinal fibrosis in a murine model using 2,4,6-trinitrobenzene sulfonic acid (TNBS). TNBS-treated or control mice were sacrificed after 4 and 6 weeks of intervention; alterations in colonic genes and fecal metabolites were determined by transcriptomics and metabolomics, respectively. Differential, tendency, enrichment, and correlation analyses were performed to assess the relationship between host genes and fecal metabolites. Results RNA-sequencing analysis revealed that 679 differential genes with enduring changes were mainly enriched in immune response-related signaling pathways and metabolism-related biological processes. Among them, 15 lipid metabolism-related genes were closely related to the development of intestinal fibrosis. Moreover, the fecal metabolic profile was significantly altered during intestinal fibrosis development, especially the lipid metabolites. Particularly, dynamic perturbations in lipids were strongly associated with alterations in lipid metabolism-related genes expression. Additionally, six dynamically altered metabolites might serve as biomarkers to identify colitis-related intestinal fibrosis in the murine model. Conclusions Intestinal fibrosis in colitis mice might be related to dynamic changes in gene expression and metabolites. These findings could provide new insights into the pathogenesis of intestinal fibrosis

    Factors influencing self-management behavior during the “Blanking Period” in patients with atrial fibrillation : A cross-sectional study based on the information-motivation-behavioral skills model

    No full text
    Background: Atrial fibrillation (AF) is becoming increasingly common. Effective self-management during the “Blanking Period” is critical. The Information-Motivation-Behavioral skills (IMB) model can be used to study health behaviors in chronic disease patients, but it has not been studied in AF patients. Objective: The goal of this study was to explore the influencing factors and interaction pathways of self-management behavior in AF patients during the "Blanking Period" using the IMB model. Methods: From June to December 2021, a cross-sectional design was conducted. Patients with AF during the "Blanking Period" (N=220) were recruited. They filled out several quantitative questionnaires, including the Jessa Atrial Fibrillation Knowledge Questionnaire, the Confidence in Atrial Fibrillation Management Scale, the Perceived Social Support Scale, the All Aspects of Health Literacy Scale, and the Self-care Scale for Chronic Atrial Fibrillation Patients. Data were analyzed using correlation analysis, multiple regression analysis, and path analysis. Results: Total score of self-management behavior was (33.83 ± 10.66). AF knowledge (β = 0.252, P < 0.001), self-management confidence (β = 0.219, P < 0.001), social support (β = 0.291, P < 0.001), and health literacy (β = 0.262, P < 0.001) were all positively correlated with patients' self-management behavior, accounting for 66.50 percent of the total variance. Conclusions: During the "Blanking Period", the IMB model can be used to predict the factors that influence self-management behavior in AF patients. By using IMB model, interventions targeting patient-specific influencing factors could improve self-management behavior and quality of life in AF patients

    An improved suppression subtractive hybridization technique to develop species-specific repetitive sequences from Erianthus arundinaceus (Saccharum complex)

    No full text
    Abstract Background Sugarcane has recently attracted increased attention for its potential as a source of bioethanol and methane. However, a narrow genetic base has limited germplasm enhancement of sugarcane. Erianthus arundinaceus is an important wild genetic resource that has many excellent traits for improving cultivated sugarcane via wide hybridization. Species-specific repetitive sequences are useful for identifying genome components and investigating chromosome inheritance in noblization between sugarcane and E. arundinaceus. Here, suppression subtractive hybridization (SSH) targeting E. arundinaceus-specific repetitive sequences was performed. The five critical components of the SSH reaction system, including enzyme digestion of genomic DNA (gDNA), adapters, digested gDNA concentrations, primer concentrations, and LA Taq polymerase concentrations, were improved using a stepwise optimization method to establish a SSH system suitable for obtaining E. arundinaceus-specific gDNA fragments. Results Specificity of up to 85.42% was confirmed for the SSH method as measured by reverse dot blot (RDB) of an E. arundinaceus subtractive library. Furthermore, various repetitive sequences were obtained from the E. arundinaceus subtractive library via fluorescence in situ hybridization (FISH), including subtelomeric and centromeric regions. EaCEN2-166F/R and EaSUB1-127F/R primers were then designed as species-specific markers to accurately validate E. arundinaceus authenticity. Conclusions This is the first report that E. arundinaceus-specific repetitive sequences were obtained via an improved SSH method. These results suggested that this novel SSH system could facilitate screening of species-specific repetitive sequences for species identification and provide a basis for development of similar applications for other plant species
    corecore