2,261 research outputs found

    Towards Optimally Decentralized Multi-Robot Collision Avoidance via Deep Reinforcement Learning

    Full text link
    Developing a safe and efficient collision avoidance policy for multiple robots is challenging in the decentralized scenarios where each robot generate its paths without observing other robots' states and intents. While other distributed multi-robot collision avoidance systems exist, they often require extracting agent-level features to plan a local collision-free action, which can be computationally prohibitive and not robust. More importantly, in practice the performance of these methods are much lower than their centralized counterparts. We present a decentralized sensor-level collision avoidance policy for multi-robot systems, which directly maps raw sensor measurements to an agent's steering commands in terms of movement velocity. As a first step toward reducing the performance gap between decentralized and centralized methods, we present a multi-scenario multi-stage training framework to find an optimal policy which is trained over a large number of robots on rich, complex environments simultaneously using a policy gradient based reinforcement learning algorithm. We validate the learned sensor-level collision avoidance policy in a variety of simulated scenarios with thorough performance evaluations and show that the final learned policy is able to find time efficient, collision-free paths for a large-scale robot system. We also demonstrate that the learned policy can be well generalized to new scenarios that do not appear in the entire training period, including navigating a heterogeneous group of robots and a large-scale scenario with 100 robots. Videos are available at https://sites.google.com/view/drlmac

    Complexity Analysis of Balloon Drawing for Rooted Trees

    Get PDF
    In a balloon drawing of a tree, all the children under the same parent are placed on the circumference of the circle centered at their parent, and the radius of the circle centered at each node along any path from the root reflects the number of descendants associated with the node. Among various styles of tree drawings reported in the literature, the balloon drawing enjoys a desirable feature of displaying tree structures in a rather balanced fashion. For each internal node in a balloon drawing, the ray from the node to each of its children divides the wedge accommodating the subtree rooted at the child into two sub-wedges. Depending on whether the two sub-wedge angles are required to be identical or not, a balloon drawing can further be divided into two types: even sub-wedge and uneven sub-wedge types. In the most general case, for any internal node in the tree there are two dimensions of freedom that affect the quality of a balloon drawing: (1) altering the order in which the children of the node appear in the drawing, and (2) for the subtree rooted at each child of the node, flipping the two sub-wedges of the subtree. In this paper, we give a comprehensive complexity analysis for optimizing balloon drawings of rooted trees with respect to angular resolution, aspect ratio and standard deviation of angles under various drawing cases depending on whether the tree is of even or uneven sub-wedge type and whether (1) and (2) above are allowed. It turns out that some are NP-complete while others can be solved in polynomial time. We also derive approximation algorithms for those that are intractable in general

    Cuts and Partitions in Graphs/Trees with Applications

    Get PDF
    Both the maximum agreement forest problem and the multicut on trees problem are NP-hard, thus cannot be solved efficiently if P /=NP. The maximum agreement forest problem was motivated in the study of evolution trees in bioinformatics, in which we are given two leaf-labeled trees and are asked to find a maximum forest that is a subgraph of both trees. The multicuton trees problem has applications in networks, in which we are given a forest and a set of pairs of termianls and are asked to find a cut that separates all pairs of terminals. We develop combinatorial and algorithmic techniques that lead to improved parameterized algorithms, approximation algorithms, and kernelization algorithms for these problems. For the maximum agreement forest problem, we proceed from the bottommost level of trees and extend solutions to whole trees. With this technique, we show that the maxi- mum agreement forest problem is fixed-parameterized tractable in general trees, resolving an open problem in this area. We also provide the first constant ratio approximation algorithm for the problem in general trees. For the multicut on trees problem, we take a new look at the problem through the eyes of vertex cover problem. This connection allows us to develop an kernelization algorithm for the problem, which gives an upper bound of O(k3) on the kernel size, significantly improving the previous best upper bound O(k6). We further exploit this connection to give a parameterized algorithm for the problem that runs in time O∗ (1.62k), thus improving the previous best algorithm of running time O∗ (2k). In the protein complex prediction problem, which comes directly from the study of bioinformatics, we are given a protein-protein interaction network, and are asked to find dense regions in this graph. We formulate this problem as a graph clustering problem and develop an algorithm to refine the results for identifying protein complexes. We test our algorithm on yeast protein- protein interaction networks, and we show that our algorithm is able to identify complexes more accurately than other existing algorithms

    ESMC: Entire Space Multi-Task Model for Post-Click Conversion Rate via Parameter Constraint

    Full text link
    Large-scale online recommender system spreads all over the Internet being in charge of two basic tasks: Click-Through Rate (CTR) and Post-Click Conversion Rate (CVR) estimations. However, traditional CVR estimators suffer from well-known Sample Selection Bias and Data Sparsity issues. Entire space models were proposed to address the two issues via tracing the decision-making path of "exposure_click_purchase". Further, some researchers observed that there are purchase-related behaviors between click and purchase, which can better draw the user's decision-making intention and improve the recommendation performance. Thus, the decision-making path has been extended to "exposure_click_in-shop action_purchase" and can be modeled with conditional probability approach. Nevertheless, we observe that the chain rule of conditional probability does not always hold. We report Probability Space Confusion (PSC) issue and give a derivation of difference between ground-truth and estimation mathematically. We propose a novel Entire Space Multi-Task Model for Post-Click Conversion Rate via Parameter Constraint (ESMC) and two alternatives: Entire Space Multi-Task Model with Siamese Network (ESMS) and Entire Space Multi-Task Model in Global Domain (ESMG) to address the PSC issue. Specifically, we handle "exposure_click_in-shop action" and "in-shop action_purchase" separately in the light of characteristics of in-shop action. The first path is still treated with conditional probability while the second one is treated with parameter constraint strategy. Experiments on both offline and online environments in a large-scale recommendation system illustrate the superiority of our proposed methods over state-of-the-art models. The real-world datasets will be released

    SOC Design for Speech-to-Speech Translation

    Get PDF
    Non

    Dephasing of ultracold cesium 80D5/280D_{5/2}-Rydberg Electromagnetically Induced Transparency

    Full text link
    We study Rydberg electromagnetically induced transparency (EIT) of a cascade three-level atom involving 80D5/2D_{5/2} state in a strong interaction regime employing a cesium ultracold cloud. In our experiment, a strong coupling laser couples 6P3/2P_{3/2} to 80D5/2D_{5/2} transition, while a weak probe, driving 6S1/2S_{1/2} to 6P3/2P_{3/2} transition, probes the coupling induced EIT signal. At the two-photon resonance, we observe that the EIT transmission decreases slowly with time, which is a signature of interaction induced metastability. The dephasing rate γOD\gamma_{\rm OD} is extracted with optical depth OD = γODt\gamma_{\rm OD}t. We find that the optical depth linearly increases with time at onset for a fixed probe incident photon number RinR_{\rm in} before saturation. The dephasing rate shows a nonlinear dependence on RinR_{\rm in}. The dephasing mechanism is mainly attributed to the strong dipole-dipole interactions, which leads to state transfer from nD5/2nD_{5/2} to other Rydberg states. We demonstrate that the typical transfer time τ0(80D)\tau_{0(80D)} obtained by the state selective field ionization technique is comparable with the decay time of EIT transmission τ0(EIT)\tau_{0({\rm EIT})}. The presented experiment provides a useful tool for investigating the strong nonlinear optical effects and metastable state in Rydberg many-body systems.Comment: 7 pages, 5 figure
    • …
    corecore