18 research outputs found

    Large-Area Nanocrystalline Caesium Lead Chloride Thin Films: A Focus on the Exciton Recombination Dynamics

    Get PDF
    Caesium lead halide perovskites were recently demonstrated to be a relevant class of semiconductors for photonics and optoelectronics. Unlike CsPbBr3 and CsPbI3, the realization of high-quality thin films of CsPbCl3, particularly interesting for highly efficient white LEDs when coupled to converting phosphors, is still a very demanding task. In this work we report the first successful deposition of nanocrystalline CsPbCl3 thin films (70–150 nm) by radio frequency magnetron sputtering on large-area substrates. We present a detailed investigation of the optical properties by high resolution photoluminescence (PL) spectroscopy, resolved in time and space in the range 10–300 K, providing quantitative information concerning carriers and excitons recombination dynamics. The PL is characterized by a limited inhomogeneous broadening (~15 meV at 10 K) and its origin is discussed from detailed analysis with investigations at the micro-scale. The samples, obtained without any post-growth treatment, show a homogeneous PL emission in spectrum and intensity on large sample areas (several cm2). Temperature dependent and time-resolved PL spectra elucidate the role of carrier trapping in determining the PL quenching up to room temperature. Our results open the route for the realization of large-area inorganic halide perovskite films for photonic and optoelectronic devices

    Linear, Non-Conjugated Cyclic and Conjugated Cyclic Paraphenylene under Pressure

    Get PDF
    The n-paraphenylene family comprises chains of phenylene units linked together by C-C bonds that are between single- and double-bonded, and where n corresponds to the number of phenylene units. In this work, we compare the response of the optical properties of different phenylene arrangements. We study linear chains (LPP), cyclic systems (CPPs), and non-conjugated cyclic systems with two hydrogenated phenylenes (H4[n]CPP). Particularly, the systems of interest in this work are [6]LPP, [12]- and [6]CPP and H4[6]CPP. This work combines Raman and infrared spectroscopies with absorption and fluorescence (one- and two-photon excitations) measured as a function of pressure up to maximum of about 25 GPa. Unprecedented crystallographic pressure-dependent results are shown on H4[n]CPP, revealing intramolecular ¿-¿ interactions upon compression. These intramolecular interactions justify the H4[n]CPP singular optical properties with increasing fluorescence lifetime as a function of pressure

    Large-Area Nanocrystalline Caesium Lead Chloride Thin Films: A Focus on the Exciton Recombination Dynamics

    No full text
    Caesium lead halide perovskites were recently demonstrated to be a relevant class of semiconductors for photonics and optoelectronics. Unlike CsPbBr3 and CsPbI3, the realization of high-quality thin films of CsPbCl3, particularly interesting for highly efficient white LEDs when coupled to converting phosphors, is still a very demanding task. In this work we report the first successful deposition of nanocrystalline CsPbCl3 thin films (70–150 nm) by radio frequency magnetron sputtering on large-area substrates. We present a detailed investigation of the optical properties by high resolution photoluminescence (PL) spectroscopy, resolved in time and space in the range 10–300 K, providing quantitative information concerning carriers and excitons recombination dynamics. The PL is characterized by a limited inhomogeneous broadening (~15 meV at 10 K) and its origin is discussed from detailed analysis with investigations at the micro-scale. The samples, obtained without any post-growth treatment, show a homogeneous PL emission in spectrum and intensity on large sample areas (several cm2). Temperature dependent and time-resolved PL spectra elucidate the role of carrier trapping in determining the PL quenching up to room temperature. Our results open the route for the realization of large-area inorganic halide perovskite films for photonic and optoelectronic devices

    Analysis of the Urbach tail in caesium lead halide perovskites

    No full text
    The role of structural and dynamical disorder in semiconductors is a topic of fundamental relevance because of its contribution to the spectral line shape of the photoluminescence, and it plays a major role in ruling the carrier transport properties at the band edge. In this regard, a class of semiconductors, i.e., halide perovskites, deeply investigated in the last decade, shows a peculiar degree of disorder, which has only been recently under investigation. The interest to study disorder in halide perovskites is related to the large set of innovative applications of this class of materials, spanning from energy harvesting to high brilliance incoherent and coherent light emitters. In this perspective, we show that quantitative information on the disorder in halide perovskites can be extracted by deep analysis of the photoluminescence in different experimental conditions. Our study, conducted on a large set of samples of a metal halide perovskite, CsPbBr3, prepared with various synthesis/deposition methods, clarifies the relative weight of the static and dynamic contributions. A comparison with theoretical predictions is provided, gaining insights into the exciton/carrier–phonon interaction in metal halide perovskites
    corecore