461 research outputs found

    Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA.

    Get PDF
    Single-point failures of natural gas infrastructure can hamper methane emission control strategies designed to mitigate climate change. The 23 October 2015 blowout of a well connected to the Aliso Canyon underground storage facility in California resulted in a massive release of natural gas. Analysis of methane and ethane data from dozens of plume transects, collected during 13 research-aircraft flights between 7 November 2015 and 13 February 2016, shows atmospheric leak rates of up to 60 metric tons of methane and 4.5 metric tons of ethane per hour. At its peak, this blowout effectively doubled the methane emission rate of the entire Los Angeles basin and, in total, released 97,100 metric tons of methane to the atmosphere

    Agriculture is a major source of NO x pollution in California.

    Get PDF
    Nitrogen oxides (NO x = NO + NO2) are a primary component of air pollution-a leading cause of premature death in humans and biodiversity declines worldwide. Although regulatory policies in California have successfully limited transportation sources of NO x pollution, several of the United States' worst-air quality districts remain in rural regions of the state. Site-based findings suggest that NO x emissions from California's agricultural soils could contribute to air quality issues; however, a statewide estimate is hitherto lacking. We show that agricultural soils are a dominant source of NO x pollution in California, with especially high soil NO x emissions from the state's Central Valley region. We base our conclusion on two independent approaches: (i) a bottom-up spatial model of soil NO x emissions and (ii) top-down airborne observations of atmospheric NO x concentrations over the San Joaquin Valley. These approaches point to a large, overlooked NO x source from cropland soil, which is estimated to increase the NO x budget by 20 to 51%. These estimates are consistent with previous studies of point-scale measurements of NO x emissions from the soil. Our results highlight opportunities to limit NO x emissions from agriculture by investing in management practices that will bring co-benefits to the economy, ecosystems, and human health in rural areas of California

    The impacts of wildfires on ozone production and boundary layer dynamics in California's Central Valley

    Get PDF
    We investigate the role of wildfire smoke on ozone photochemical production (P(O3)) and atmospheric boundary layer (ABL) dynamics in California's Central Valley during June–September from 2016 to 2020. Wildfire events are identified by the Hazard Mapping System (HMS) and the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT). Air quality and meteorological data are analyzed from 10 monitoring sites operated by the California Air Resources Board (CARB) across the Central Valley. On average, wildfires were found to influence air quality in the Central Valley on about 20 % of the total summer days of the study. During wildfire-influenced periods, maximum daily 8 h averaged (MDA8) O3 was enhanced by about 5.5 ppb or 10 % of the median MDA8 (once corrected for the slightly warmer temperatures) over the entire valley. Overall, nearly half of the total exceedances of the National Ambient Air Quality Standards (NAAQS) where MDA8 O3 &gt; 70 ppb occur under the influence of wildfires, and approximately 10 % of those were in exceedance by 5 ppb or less indicating circumstances that would have been in compliance with the NAAQS were it not for wildfire emissions. The photochemical ozone production rate calculated from the modified Leighton relationship was also found to be higher by 50 % on average compared with non-fire periods despite the average diminution of j(NO2) by ∼ 7 % due to the shading effect of the wildfire smoke plumes. Surface heat flux measurements from two AmeriFlux sites in the northern San Joaquin Valley show midday surface buoyancy fluxes decrease by 30 % on average when influenced by wildfire smoke. Similarly, afternoon peak ABL heights measured from a radio acoustic sounding system (RASS) located in Visalia in the southern San Joaquin Valley were found to decrease on average by 80 m (∼ 15 %) with a concomitant reduction of downwelling shortwave radiation of 54 Wm−2, consistent with past observations of the dependence of boundary layer heights on insolation.</p

    Seasonal differences in the photochemistry of the South Pacific: A comparison of observations and model results from PEM-Tropics A and B

    Get PDF
    A time-dependent photochemical box model is used to examine the photochemistry of the equatorial and southern subtropical Pacific troposphere with aircraft data obtained during two distinct seasons: the Pacific Exploratory Mission-Tropics A (PEM-Tropics A) field campaign in September and October of 1996 and the Pacific Exploratory Mission-Tropics B (PEM-Tropics B) campaign in March and April of 1999. Model-predicted values were compared to observations for selected species (e.g., NO2, OH, HO2) with generally good agreement. Predicted values of HO2 were larger than those observed in the upper troposphere, in contrast to previous studies which show a general underprediction of HO2 at upper altitudes. Some characteristics of the budgets of HOx, NOx, and peroxides are discussed. The integrated net tendency for O3 is negative over the remote Pacific during both seasons, with gross formation equal to no more than half of the gross destruction. This suggests that a continual supply of O3 into the Pacific region throughout the year must exist in order to maintain O3 levels. Integrated net tendencies for equatorial O3 showed a seasonality, with a net loss of 1.06×1011 molecules cm-2 s-1 during PEM-Tropics B (March) increasing by 50% to 1.60×1011 molecules cm-2 s-1 during PEM-Tropics A (September). The seasonality over the southern subtropical Pacific was somewhat lower, with losses of 1.21×1011 molecules cm-2 s-1 during PEM-Tropics B (March) increasing by 25% to 1.51×1011 molecules cm-2 s-1 during PEM-Tropics A (September). While the larger net losses during PEM-Tropics A were primarily driven by higher concentrations of O3, the ability of the subtropical atmosphere to destroy O3 was ∼30% less effective during the PEM-Tropics A (September) campaign due to a drier atmosphere and higher overhead O3 column amounts. Copyright 2001 by the American Geophysical Union
    • …
    corecore