461 research outputs found
Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA.
Single-point failures of natural gas infrastructure can hamper methane emission control strategies designed to mitigate climate change. The 23 October 2015 blowout of a well connected to the Aliso Canyon underground storage facility in California resulted in a massive release of natural gas. Analysis of methane and ethane data from dozens of plume transects, collected during 13 research-aircraft flights between 7 November 2015 and 13 February 2016, shows atmospheric leak rates of up to 60 metric tons of methane and 4.5 metric tons of ethane per hour. At its peak, this blowout effectively doubled the methane emission rate of the entire Los Angeles basin and, in total, released 97,100 metric tons of methane to the atmosphere
Agriculture is a major source of NO x pollution in California.
Nitrogen oxides (NO x = NO + NO2) are a primary component of air pollution-a leading cause of premature death in humans and biodiversity declines worldwide. Although regulatory policies in California have successfully limited transportation sources of NO x pollution, several of the United States' worst-air quality districts remain in rural regions of the state. Site-based findings suggest that NO x emissions from California's agricultural soils could contribute to air quality issues; however, a statewide estimate is hitherto lacking. We show that agricultural soils are a dominant source of NO x pollution in California, with especially high soil NO x emissions from the state's Central Valley region. We base our conclusion on two independent approaches: (i) a bottom-up spatial model of soil NO x emissions and (ii) top-down airborne observations of atmospheric NO x concentrations over the San Joaquin Valley. These approaches point to a large, overlooked NO x source from cropland soil, which is estimated to increase the NO x budget by 20 to 51%. These estimates are consistent with previous studies of point-scale measurements of NO x emissions from the soil. Our results highlight opportunities to limit NO x emissions from agriculture by investing in management practices that will bring co-benefits to the economy, ecosystems, and human health in rural areas of California
Recommended from our members
Extrapolation of point measurements and fertilizer-only emission factors cannot capture statewide soil NO x emissions.
Maaz et al. argue that inconsistencies across scales of observation undermine our working hypothesis that soil NO x emissions have been substantially overlooked in California; however, the core issues they raise are already discussed in our manuscript. We agree that point measurements cannot be reliably used to estimate statewide soil NO x emissions-the principal motivation behind our new modeling/airplane approach. Maaz et al.'s presentation of fertilizer-based emission factors (a nonmechanistic scaling of point measures to regions based solely on estimated nitrogen fertilizer application rates) includes no data from California or other semiarid sites, and does not explicitly account for widely known controls of climate, soil, and moisture on soil NO x fluxes. In contrast, our model includes all of these factors. Finally, the fertilizer sales data that Maaz et al. highlight are known to suffer from serious errors and do not offer a logically more robust pathway for spatial analysis of NO x emissions from soil
Recommended from our members
Ozone production in the upper troposphere and the influence of aircraft during SONEX: Approach of NO(x)-saturated conditions
During October/November 1997, simultaneous observations of NO, HO2 and other species were obtained as part of the SONEX campaign in the upper troposphere. We use these observations, over the North Atlantic (40-60°N), to derive ozone production rates, P(O3), and to examine the relationship between P(O3) and the concentrations of NO(x) (= NO + NO2) and HO(x) (= OH + peroxy) radicals. A positive correlation is found between P(O3) and NO(x) over the entire data set, which reflects the association of elevated HO(x) with elevated NO(x) injected by deep convection and lightning. By filtering out this association we find that for NO(x)>70 pptv, P(O3) is nearly independent of NO(x), showing the approach of NO(x)-saturated conditions. Predicted doubling of aircraft emissions in the future will result in less than doubling of the aircraft contribution to ozone over the North Atlantic in the fall. Greater sensitivity to aircraft emissions would be expected in the summer
The impacts of wildfires on ozone production and boundary layer dynamics in California's Central Valley
We investigate the role of wildfire smoke on ozone
photochemical production (P(O3)) and atmospheric boundary layer (ABL)
dynamics in California's Central Valley during June–September from 2016 to 2020.
Wildfire events are identified by the Hazard Mapping System (HMS) and the
Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT). Air
quality and meteorological data are analyzed from 10 monitoring sites
operated by the California Air Resources Board (CARB) across the Central
Valley. On average, wildfires were found to influence air quality in the
Central Valley on about 20 % of the total summer days of the study. During
wildfire-influenced periods, maximum daily 8 h averaged (MDA8) O3 was
enhanced by about 5.5 ppb or 10 % of the median MDA8 (once corrected for
the slightly warmer temperatures) over the entire valley. Overall, nearly
half of the total exceedances of the National Ambient Air Quality Standards
(NAAQS) where MDA8 O3 > 70 ppb occur under the influence of
wildfires, and approximately 10 % of those were in exceedance by 5 ppb or
less indicating circumstances that would have been in compliance with the
NAAQS were it not for wildfire emissions. The photochemical ozone production
rate calculated from the modified Leighton relationship was also found to be
higher by 50 % on average compared with non-fire periods despite the average
diminution of j(NO2) by
∼ 7 % due to the shading effect of the wildfire smoke
plumes. Surface heat flux measurements from two AmeriFlux sites in the
northern San Joaquin Valley show midday surface buoyancy fluxes decrease by
30 % on average when influenced by wildfire smoke. Similarly, afternoon
peak ABL heights measured from a radio acoustic sounding system (RASS)
located in Visalia in the southern San Joaquin Valley were found to decrease
on average by 80 m (∼ 15 %) with a concomitant reduction of
downwelling shortwave radiation of 54 Wm−2, consistent with past
observations of the dependence of boundary layer heights on insolation.</p
Recommended from our members
Photochemistry of HOx in the upper troposphere at northern midlatitudes
The factors controlling the concentrations of HOx radicals (= OH + peroxy) in the upper troposphere (8-12 km) are examined using concurrent aircraft observations of OH, HO2, H2O2, CH3OOH, and CH2O made during the Subsonic Assessment Ozone and Nitrogen Oxide Experiment (SONEX) at northern midlatitudes in the fall. These observations, complemented by concurrent measurements of O3, H2O, NO, peroxyacetyl nitrate (PAN), HNO3, CH4, CO, acetone, hydrocarbons, actinic fluxes, and aerosols, allow a highly constrained mass balance analysis of HOx and of the larger chemical family HOy (= HOx + 2 H2O2 + 2 CH3OOH + HNO2 + HNO4). Observations of OH and HO2 are successfully simulated to within 40% by a diel steady state model constrained with observed H2O2 and CH3OOH. The model captures 85% of the observed HOx variance, which is driven mainly by the concentrations of NOx (= NO + NO2) and by the strength of the HOx primary sources. Exceptions to the good agreement between modeled and observed HOx are at sunrise and sunset, where the model is too low by factors of 2-5, and inside cirrus clouds, where the model is too high by factors of 1.2-2. Heterogeneous conversion of NO2 to HONO on aerosols (γNO2=10-3) during the night followed by photolysis of HONO could explain part of the discrepancy at sunrise. Heterogeneous loss of HO2 on ice crystals (γice_HO2=0.025) could explain the discrepancy in cirrus. Primary sources of HOx from O(1D)+H2O and acetone photolysis were of comparable magnitude during SONEX. The dominant sinks of HOy were OH+HO2 (NOx<50 parts per trillion by volume (pptv)) and OH+HNO4 (NOx>50 pptv). Observed H2O2 concentrations are reproduced by model calculations to within 50% if one allows in the model for heterogeneous conversion of HO2 to H2O2 on aerosols (γHO2=0.2). Observed CH3OOH concentrations are underestimated by a factor of 2 on average. Observed CH2O concentrations were usually below the 50 pptv detection limit, consistent with model results; however, frequent occurrences of high values in the observations (up to 350 pptv) are not captured by the model. These high values are correlated with high CH3OH and with cirrus clouds. Heterogeneous oxidation of CH3OH to CH2O on aerosols or ice crystals might provide an explanation (γice_CH3OH∼0.01 would be needed). Copyright 2000 by the American Geophysical Union
Seasonal differences in the photochemistry of the South Pacific: A comparison of observations and model results from PEM-Tropics A and B
A time-dependent photochemical box model is used to examine the photochemistry of the equatorial and southern subtropical Pacific troposphere with aircraft data obtained during two distinct seasons: the Pacific Exploratory Mission-Tropics A (PEM-Tropics A) field campaign in September and October of 1996 and the Pacific Exploratory Mission-Tropics B (PEM-Tropics B) campaign in March and April of 1999. Model-predicted values were compared to observations for selected species (e.g., NO2, OH, HO2) with generally good agreement. Predicted values of HO2 were larger than those observed in the upper troposphere, in contrast to previous studies which show a general underprediction of HO2 at upper altitudes. Some characteristics of the budgets of HOx, NOx, and peroxides are discussed. The integrated net tendency for O3 is negative over the remote Pacific during both seasons, with gross formation equal to no more than half of the gross destruction. This suggests that a continual supply of O3 into the Pacific region throughout the year must exist in order to maintain O3 levels. Integrated net tendencies for equatorial O3 showed a seasonality, with a net loss of 1.06×1011 molecules cm-2 s-1 during PEM-Tropics B (March) increasing by 50% to 1.60×1011 molecules cm-2 s-1 during PEM-Tropics A (September). The seasonality over the southern subtropical Pacific was somewhat lower, with losses of 1.21×1011 molecules cm-2 s-1 during PEM-Tropics B (March) increasing by 25% to 1.51×1011 molecules cm-2 s-1 during PEM-Tropics A (September). While the larger net losses during PEM-Tropics A were primarily driven by higher concentrations of O3, the ability of the subtropical atmosphere to destroy O3 was ∼30% less effective during the PEM-Tropics A (September) campaign due to a drier atmosphere and higher overhead O3 column amounts. Copyright 2001 by the American Geophysical Union
Recommended from our members
Sources of upper tropospheric HOx over the South Pacific Convergence Zone: A case study
- …