17 research outputs found
Recommended from our members
Investigations into the Metabolic Requirements for Lipoic Acid and Lipid Species During the Life Cycle of the Malarial Parasite Plasmodium Berghei
Plasmodium, like many other pathogenic organisms, relies on a balance of synthesis and scavenging of lipid species for replication. How the parasite creates this balance is particularly important to successfully intervene in transmission of the disease and to generate new chemotherapies to cure infections. This study focuses on two specific aspects in the field of lipid biology of Plasmodium parasites and their hosts. Lipoic acid is a short eight-carbon chain that serves a number of different functions with the cell. By disrupting a key enzyme in the lipoic acid synthesis pathway in the rodent species of malaria, Plasmodium berghei, we sought to investigate its role during the parasite life-cycle. Deletion of the lipoyl-octanoyl transferase enzyme, LipB in P. berghei parasites demonstrate a liver-stage specific need for this metabolic pathway. In order to explore the impact of the fatty acid and triglyceride content on the pathogenesis of Plasmodium parasites, this study tests two methods to reduce lipid content in vivo and test the propagation of P. berghei parasite in these environments. Results from this study set forth new avenues of research with implications for the development of novel antimalarials and vaccine candidates
Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks
A principal task in dissecting the genetics of complex traits is to identify causal genes for disease phenotypes. We previously developed a method to infer causal relationships among genes through the integration of DNA variation, gene transcription and phenotypic information. Here we have validated our method through the characterization of transgenic and knockout mouse models of genes predicted to be causal for abdominal obesity. Perturbation of eight out of the nine genes, with Gas7, Me1 and Gpx3 being newly confirmed, resulted in significant changes in obesity-related traits. Liver expression signatures revealed alterations in common metabolic pathways and networks contributing to abdominal obesity and overlapped with a macrophage-enriched metabolic network module that is highly associated with metabolic traits in mice and humans. Integration of gene expression in the design and analysis of traditional F(2) intercross studies allows high-confidence prediction of causal genes and identification of pathways and networks involved
Oleic Acid Biosynthesis in Plasmodium falciparum: Characterization of the Stearoyl-CoA Desaturase and Investigation as a Potential Therapeutic Target
BACKGROUND:Plasmodium falciparum parasitization of erythrocytes causes a substantial increase in the levels of intracellular fatty acids, notably oleic acid. How parasites acquire this monounsaturated fatty acid has remained enigmatic. Here, we report on the biochemical and enzymatic characterization of stearoyl-CoA desaturase (SCD) in P. falciparum. METHODOLOGY/PRINCIPAL FINDINGS:Metabolic labeling experiments allowed us to demonstrate the production of oleic acid from stearic acid both in lysates of parasites incubated with [(14)C]-stearoyl-CoA and in parasite-infected erythrocytes labeled with [(14)C]-stearic acid. Optimal SCD activity was detected in schizonts, the stage of maximal membrane synthesis. This activity correlated with a late trophozoite stage-specific induction of PFE0555w transcripts. PFE0555w harbors a typical SCD signature. Similar to mammalian SCDs, this protein was found to be associated with the endoplasmic reticulum, as determined with PFE0555w-GFP tagged transgenic P. falciparum. Importantly, these parasites exhibited increased rates of stearic to oleic acid conversion, providing additional evidence that PFE0555w encodes the plasmodial SCD (PfSCD). These findings prompted us to assess the activity of sterculic acid analogues, known to be specific Delta9-desaturase inhibitors. Methyl sterculate inhibited the synthesis of oleic acid both with parasite lysates and infected erythrocytes, most likely by targeting PfSCD. This compound exhibited significant, rapid and irreversible antimalarial activity against asexual blood stages. This parasiticidal effect was antagonized by oleic acid. CONCLUSION/SIGNIFICANCE:Our study provides evidence that parasite-mediated fatty acid modification is important for blood-stage survival and provides a new strategy to develop a novel antimalarial therapeutic based on the inhibition of PfSCD
Recommended from our members
Antibody Secreting Cell Responses following Vaccination with Bivalent Oral Cholera Vaccine among Haitian Adults
Background: The bivalent whole-cell (BivWC) oral cholera vaccine (Shanchol) is effective in preventing cholera. However, evaluations of immune responses following vaccination with BivWC have been limited. To determine whether BivWC induces significant mucosal immune responses, we measured V. cholerae O1 antigen-specific antibody secreting cell (ASC) responses following vaccination. Methodology/Principal Findings We enrolled 24 Haitian adults in this study, and administered doses of oral BivWC vaccine 14 days apart (day 0 and day 14). We drew blood at baseline, and 7 days following each vaccine dose (day 7 and 21). Peripheral blood mononuclear cells (PBMCs) were isolated, and ASCs were enumerated using an ELISPOT assay. Significant increases in Ogawa (6.9 cells per million PBMCs) and Inaba (9.5 cells per million PBMCs) OSP-specific IgA ASCs were detected 7 days following the first dose (P < 0.001), but not the second dose. The magnitude of V. cholerae-specific ASC responses did not appear to be associated with recent exposure to cholera. ASC responses measured against the whole lipolysaccharide (LPS) antigen and the OSP moiety of LPS were equivalent, suggesting that all or nearly all of the LPS response targets the OSP moiety. Conclusions/Significance: Immunization with the BivWC oral cholera vaccine induced ASC responses among a cohort of healthy adults in Haiti after a single dose. The second dose of vaccine resulted in minimal ASC responses over baseline, suggesting that the current dosing schedule may not be optimal for boosting mucosal immune responses to V. cholerae antigens for adults in a cholera-endemic area
Recommended from our members
Plasma Leptin Levels in Children Hospitalized with Cholera in Bangladesh
Vibrio cholerae, the cause of cholera, induces both innate and adaptive immune responses in infected humans. Leptin is a hormone that plays a role in both metabolism and mediating immune responses. We characterized leptin levels in 11 children with cholera in Bangladesh, assessing leptin levels on days 2, 7, 30, and 180 following cholera. We found that patients at the acute stage of cholera had significantly lower plasma leptin levels than matched controls, and compared with levels in late convalescence. We then assessed immune responses to V. cholerae antigens in 74 children with cholera, correlating these responses to plasma leptin levels on day 2 of illness. In multivariate analysis, we found an association between day 2 leptin levels and development of later anti-cholera toxin B subunit (CtxB) responses. This finding appeared to be limited to children with better nutritional status. Interestingly, we found no association between leptin levels and antibody responses to V. cholerae lipopolysaccharide, a T cell–independent antigen. Our results suggest that leptin levels may be associated with cholera, including the development of immune responses to T cell–dependent antigens
Bivalent oral cholera vaccination induces a memory B cell response to the V. cholerae O1-polysaccharide antigen in Haitian adults.
The bivalent killed whole-cell oral cholera vaccine (BivWC) is being increasingly used to prevent cholera. The presence of O-antigen-specific memory B cells (MBC) has been associated with protective immunity against cholera, yet MBC responses have not been evaluated after BivWC vaccination. To address this knowledge gap, we measured V. cholerae O1-antigen MBC responses following BivWC vaccination. Adults in St. Marc, Haiti, received 2 doses of the BivWC vaccine, Shanchol, two weeks apart. Participants were invited to return at days 7, 21, 44, 90, 180 and 360 after the initial vaccination. Serum antibody and MBC responses were assessed at each time-point before and following vaccination. We observed that vaccination with BivWC resulted in significant O-antigen specific MBC responses to both Ogawa and Inaba serotypes that were detected by day 21 and remained significantly elevated over baseline for up to 12 months following vaccination. The BivWC oral cholera vaccine induces durable MBC responses to the V. cholerae O1-antigen. This suggests that long-term protection observed following vaccination with BivWC could be mediated or maintained by MBC responses
A key role for lipoic acid synthesis during Plasmodium liver stage development.
The successful navigation of malaria parasites through their life cycle, which alternates between vertebrate hosts and mosquito vectors, requires a complex interplay of metabolite synthesis and salvage pathways. Using the rodent parasite Plasmodium berghei, we have explored the synthesis and scavenging pathways for lipoic acid, a short-chain fatty acid derivative that regulates the activity of α-ketoacid dehydrogenases including pyruvate dehydrogenase. In Plasmodium, lipoic acid is either synthesized de novo in the apicoplast or is scavenged from the host into the mitochondrion. Our data show that sporozoites lacking the apicoplast lipoic acid protein ligase LipB are markedly attenuated in their infectivity for mice, and in vitro studies document a very late liver stage arrest shortly before the final phase of intra-hepaticparasite maturation. LipB-deficient asexual blood stage parasites show unimpaired rates of growth in normal in vitro or in vivo conditions. However, these parasites showed reduced growth in lipid-restricted conditions induced by treatment with the lipoic acid analogue 8-bromo-octanoate or with the lipid-reducing agent clofibrate. This finding has implications for understanding Plasmodium pathogenesis in malnourished children that bear the brunt of malarial disease. This study also highlights the potential of exploiting lipid metabolism pathways for the design of genetically attenuated sporozoite vaccines
Immune responses to V. cholerae (O1 Ogawa and O1 Inaba) following vaccination with BivWC.
<p>Immune responses to V. cholerae (O1 Ogawa and O1 Inaba) following vaccination with BivWC.</p